Preview

Sports medicine: research and practice

Advanced search

Quantification and description of physical work performance

https://doi.org/10.17238/ISSN2223-2524.2019.4.21

Abstract

This article raises the question of standardization of terms and evaluation of physical performance in the scientific literature. Basic parameters of scientific research as mass, volume, force, energy, work, power are considered. In keeping with the standardization of procedures in the reporting of various types of research and the increased requirements for scientific manuscript preparation, it is vitally important that investigators conform with standard terminology. The need for standard terminology is also evident in clinical settings where different health professionals must communicate and discuss rehabilitation interventions. Strict adherence to the definitions of the international system will ensure standardization of terminology and make scientific communication more readily understandable to the worldwide scientific community.

About the Author

H. G. Knuttgen
Harvard University Medical School, Spaulding Rehabilitation Hospital
United States

Howard G. Knuttgen, Ph.D. (Biology) Department of Physical Medicine and Rehabilitation

Boston, Massachusetts



References

1. Lindow T, Brudin L, Elmberg V, Ekström M. Long-term follow-up of patients undergoing standardized bicycle exercise stress testing - New recommendations for grading of exercise capacity are clinically relevant. Clin Physiol Funct Imaging 2020 Mar 27;40(2):83-90. DOI: 10.1111/cpf.12606.

2. Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med. Sci. Sports Exerc. 1988;20(5):132-134.

3. Mancia G, De Backer G, Dominiczak A. European Guidelines for the management of arterial hypertension. Eur. Heart J. 2007;28:1462-1536.

4. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293-307. DOI: 10.1519/JSC.0b013e31823a3e2d.

5. Sabag A, Najafi A, Michael S, Esgin T, Halaki M, Hackett D. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis. J Sports Sci. 2018;36(21):2472- 2483. DOI:10.1080/02640414.2018.1464636.

6. Nuell S, Illera-Domínguez VR, Carmona G, Alomar X, Padullés JM, Lloret M, Cadefau JA. Hypertrophic muscle changes and sprint performance enhancement during a sprint-based training macrocycle in national-level sprinters. Eur J Sport Sci. 2019;26:1-10. DOI: 10.1080/17461391.2019.1668063.

7. Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Front Physiol. 2019 Aug;28(10):1132. DOI: 10.3389/fphys.2019.01132.

8. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020-2027. DOI:10.1152/jappl.1986.60.6.2020.

9. Pallarés JG, Morán-Navarro R, Ortega JF, FernándezElías VE, Mora-Rodriguez R. Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists. PLoS One. 2016;11(9):1-16. DOI: 10.1371/journal.pone.0163389.

10. Brzycki M. Strength testing: prediction of one-rep max from reps-to-fatigue. J Health Phys Educ Rec Dance. 1993;64:88-90. DOI:10.1080/07303084.1993.10606684.

11. Holloszy JO. Biochemical Adaptations in Muscle. J Biol Chem. 1967;242(9):2278-2282.

12. Oliveira AN, Hood DA. Exercise is Mitochondrial Medicine for Muscle. Sports Medicine and Health Science. 2019;1(1): 11-18.

13. Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg HC, Suetta C, Krustrup P, Elemans CPH, Ørtenblad N. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol. 2017;595(9):2839-2847. DOI:10.1113/JP273040.

14. Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP. Matched work high-intensity interval and continuous running induce similar increases in PGC-1 mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112(7):1135-1143. DOI: 10.1152/japplphysiol.01040.2011.

15. Gibala MJ, Little JP. Physiological basis of brief vigorous exercise to improve health. J Physiol. 2019:1-22. DOI: 10.1113/JP276849.

16. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915-2930. DOI: 10.1113/JP273196.

17. Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol. 2017;15(8):713. DOI: 10.3389/fphys.2017.00713.

18. Bishop D, Jenkins DG, Mackinnon LT, McEniery M, Carey MF. The effects of strength training on endurance performance and muscle characteristics. Med Sci Sports Exerc. 1999;31(6):886- 891. DOI: 10.1097/00005768-199906000-00018.

19. Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol Regul Integr Comp Physiol. 1999;276:591-596. DOI: 10.1152/ajpregu.1999. 276.2.R591.

20. Tesch PA, Thorsson A, Essen-Gustavsson B. Enzyme activities of FT and ST muscle fibers in heavy-resistance trained athletes. J Appl Physiol. 1989;67(1):83-87. DOI: 10.1152/jappl.1989.67.1.83.

21. Tesch PA, Thorsson A, Kaiser P. Muscle capillary supply and fiber type characteristics in weight and power lifters. J Appl Physiol. 1984;56(1):35-38. DOI: 10.1152/jappl.1984.56.1.35.

22. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, Trappe TA, Trappe S. Aerobic exercise training induces skeletal muscle hypertrophy and agedependent adaptations in myofiber function in young and older men. J Appl Physiol. 2012;113(9):1495-1504. DOI: 10.1152/japplphysiol.00786.2012.

23. McPhee JS, Williams AG, Degens H, Jones DA. Interindividual variability in adaptation of the leg muscles following a standardised endurance training programme in young women. Eur J Appl Physiol. 2010;109(6):1111-1118. DOI: 10.1007/s00421-010-1454-2.

24. Farup J, Kjølhede T, Sørensen H, Dalgas U, Møller AB, Vestergaard PF, Ringgaard S, Bojsen-Møller J, Vissing K. Muscle morphological and strength adaptations to endurance vs. resistance training. J Strength Cond Res. 2012;26:398-407. DOI: 10.1519/JSC.0b013e318225a26f.

25. Rønnestad BR, Hansen EA, Raastad T. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol. 2010;108(5):965-975. DOI: 10.1007/s00421-009-1307-z.

26. Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y. Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur J Appl Physiol. 2013 Nov;113(11):2691-2703. DOI: 10.1007/s00421-013-2700-1.

27. Franchi MV, Atherton PJ, Reeves ND, Flück M, Williams J, Mitchell WK, Selby A, Beltran Valls RM, Narici MV. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014;210:642-654. DOI: 10.1111/apha.12225.

28. Roman WJ, Fleckenstein J, Stray-Gundersen J, Alway SE, Peshock R, Gonyea WJ. Adaptations in the elbow flexors of elderly males after heavy-resistance training. J Appl Physiol. 1993;74: 750-754. DOI: 10.1152/jappl.1993.74.2.750.

29. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310-319. DOI: 10.1007/BF02388334.

30. Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand. 1996;157(2):175-186. DOI: 10.1046/j.1365-201X.1996.483230000.x.

31. Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sänger A, Eckstein F. Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas: quantitative assessment using MRI. Magn Reson Med. 2010;64(6):1713-1720. DOI: 10.1002/mrm.22550.

32. Izquierdo M, Häkkinen K, Ibáñez J, Kraemer WJ, Gorostiaga EM. Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol. 2005;94(1-2):70-5. DOI: 10.1007/s00421-004-1280-5.

33. Steele J, Butler A, Comerford Z, Dyer J, Lloyd N, Ward J, Fisher J, Gentil P, Scott C, Ozaki H. Similar acute physiological responses from effort and duration matched leg press and recumbent cycling tasks. Peer J. 2018;28(6):1-28. DOI: 10.7717/peerj.4403.


Review

For citations:


Knuttgen H.G. Quantification and description of physical work performance. Sports medicine: research and practice. 2019;9(4):21-24. (In Russ.) https://doi.org/10.17238/ISSN2223-2524.2019.4.21

Views: 543


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)