Preview

Спортивная медицина: наука и практика

Расширенный поиск

Влияние высокоинтенсивной интервальной тренировки на гипертрофию, силу и окислительные способности рабочих мышц спортсменов силовых видов спорта: поперечное исследование

https://doi.org/10.17238/ISSN2223-2524.2019.4.25

Полный текст:

Аннотация

Цель исследования: оценить влияние высокоинтенсивной работы на окислительные способности, силу и гипертрофию рабочих мышц у спортсменов силовых видов спорта. Материалы и методы: обследованы 35 представителей силовых видов спорта (пауэрлифтинг), средний возраст спортсменов-мужчин – 30±5,4 лет. Использованы методы: газометрический анализ (определение анаэробного порога и частоты сердечных сокращений на этом уровне, максимальное потребление кислорода и мощности педалирования на максимальном потреблении кислорода, потребление кислорода на анаэробном пороге и максимальном потреблении кислорода), ультрасонографические измерения анатомической площади поперечного сечения четырехглавой мышцы бедра, оценка максимальной произвольной силы четырёхглавой мышцы бедра и методы математической статистики. Спортсмены 3 раза в неделю (120 дней) выполняли тренировку на велоэргометре по следующему протоколу: 7 интервалов на мощности педалирования 100% от максимального потребления кислорода по 2 минуты и интервалы с частотой сердечных сокращений на уровне 85% от анаэробного порога продолжительностью 2 минуты. Результаты: после 120 дней тренировок достоверно у спортсменов силовых видов спорта увеличилась на анаэробном пороге мощность работы и потребление кислорода на 22,7 и 14,5% соответственно, а также мощность работы и потребление кислорода на уровне максимального потребления кислорода на 18,5 и 13,6%, соответственно. Также регулярные высокоинтенсивное тренировки на велоэргометре вызывают мышечно-специфическую гипертрофию, что приводит к региональным изменениям четырехглавой мышцы бедра и росте ее силы на 6,5%. Выводы: разработанный тренировочный протокол аэробной работы, позволит атлетам эффективно и безопасно влиять на окислительные способности рабочих мышц, при этом не терять основные силовые показатели.

Об авторах

А. Б. Мирошников
ФГБОУ ВО Российский государственный университет физической культуры, спорта, молодежи и туризма, Министерство спорта РФ
Россия

Мирошников Александр Борисович, доцент кафедры спортивной медицины, к.б.н.  

Москва

+7 (985) 125-12-23



В. В. Волков
ФГБОУ ВО Российский государственный университет физической культуры, спорта, молодежи и туризма, Министерство спорта РФ
Россия

Волков Василий Васильевич, аспирант кафедры спортивной медицины  

Москва



А. В. Смоленский
ФГБОУ ВО Российский государственный университет физической культуры, спорта, молодежи и туризма, Министерство спорта РФ
Россия

Смоленский Андрей Вадимович, заведующий кафедры спортивной медицины, проф.,
д.м.н.  

Москва



Список литературы

1. Lindow T, Brudin L, Elmberg V, Ekström M. Long-term follow-up of patients undergoing standardized bicycle exercise stress testing: new recommendations for grading of exercise capacity are clinically relevant // Clin Physiol Funct Imaging 2020 Mar 27;40(2):83-90. DOI: 10.1111/cpf.12606.

2. Tesch PA. Skeletal muscle adaptations consequent to longterm heavy resistance exercise // Med. Sci. Sports Exerc. 1988. Vol.20, №5. P. 132-134.

3. Mancia G, De Backer G, Dominiczak A. European Guidelines for the management of arterial hypertension // Eur. Heart J. 2007. Vol.28. P. 1462-1536.

4. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises // J Strength Cond Res. 2012 Aug; Vol.26, № 8. P. 2293-2307. DOI: 10.1519/JSC.0b013e31823a3e2d.

5. Sabag A, Najafi A, Michael S, Esgin T, Halaki M, Hackett D. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis // J Sports Sci. 2018 Nov. Vol.36, №21. P. 2472-2483. DOI:10.1080/02640414.2018.1464636.

6. Nuell S, Illera-Domínguez VR, Carmona G, Alomar X, Padullés JM, Lloret M, Cadefau JA. Hypertrophic muscle changes and sprint performance enhancement during a sprint-based training macrocycle in national-level sprinters // Eur J Sport Sci. 2019, P. 1-10. DOI: 10.1080/17461391.2019.1668063.

7. Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance // Front Physiol. 2019. Vol.10, P. 1132. DOI: 10.3389/fphys.2019.01132.

8. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange // J Appl Physiol. 1986. Vol.60, № 6. P.2020-2027. DOI:10.1152/jappl.1986.60.6.2020.

9. Pallarés JG, Morán-Navarro R, Ortega JF, FernándezElías VE, Mora-Rodriguez R. Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists // PLoS One. 2016. Vol.11, № 9. P. 1-16. DOI: 10.1371/journal.pone.0163389.

10. Brzycki M. Strength testing: prediction of one-rep max from reps-to-fatigue // J Health PhysEduc Rec Dance. 1993. Vol.64. P. 88-90. DOI:10.1080/07303084.1993.10606684.

11. Holloszy JO. Biochemical Adaptations in Muscle // J Biol Chem. 1967. Vol.242, №9. P. 2278-2282.

12. Oliveira AN, Hood DA. Exercise is Mitochondrial Medicine for Muscle // Sports Medicine and Health Science. 2019. №1(1). P. 11-18.

13. Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg HC, Suetta C, Krustrup P, Elemans CPH, Ørtenblad N. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle // J Physiol. 2017. Vol.595, № 9. P. 2839- 2847. DOI:10.1113/JP273040

14. Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP. Matched work high-intensity interval and continuous running induce similar increases in PGC-1 mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle // J Appl Physiol. 2012. Vol.112, №7. P. 1135-1143. DOI: 10.1152/japplphysiol.01040.2011.

15. Gibala MJ, Little JP. Physiological basis of brief vigorous exercise to improve health // J Physiol. 2019. P.1-22. DOI: 10.1113/JP276849.

16. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity // J Physiol. 2017. Vol.595, №9. P. 2915-2930. DOI: 10.1113/JP273196.

17. Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function // Front Physiol. 2017. Vol.15, №8. P. 713. DOI: 10.3389/fphys.2017.00713.

18. Bishop D, Jenkins DG, Mackinnon LT, McEniery M, Carey MF. The effects of strength training on endurance performance and muscle characteristics // Med Sci Sports Exerc. 1999. Vol.31. P. 886-891. DOI: 10.1097/00005768-199906000-00018.

19. Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise // Am J Physiol Regul Integr Comp Physiol. 1999. Vol.76. P. 591-R596. DOI: 10.1152/ajpregu.1999.276.2.R591.

20. Tesch PA, Thorsson A, Essen-Gustavsson B. Enzyme activities of FT and ST muscle fibers in heavy-resistance trained athletes // J Appl Physiol. 1989. Vol.67. P. 83-87. DOI: 10.1152/jappl.1989.67.1.83.

21. Tesch PA, Thorsson A, Kaiser P. Muscle capillary supply and fiber type characteristics in weight and power lifters // J Appl Physiol. 1984. Vol.56. P. 35-38. DOI: 10.1152/jappl.1984.56.1.35.

22. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, Trappe TA, Trappe S. Aerobic exercise training induces skeletal muscle hypertrophy and agedependent adaptations in myofiber function in young and older men // J Appl Physiol. 2012. Vol.113. P. 1495-1504. DOI: 10.1152/japplphysiol.00786.2012.

23. McPhee JS, Williams AG, Degens H, Jones DA. Interindividual variability in adaptation of the leg muscles following a standardised endurance training programme in young women // Eur J Appl Physiol. 2010. Vol.109. P. 1111-1118. DOI: 10.1007/s00421-010-1454-2.

24. Farup J, Kjølhede T, Sørensen H, Dalgas U, Møller AB, Vestergaard PF, Ringgaard S, Bojsen-Møller J, Vissing K. Muscle morphological and strength adaptations to endurance vs. resistance training // J Strength Cond Res. 2012. Vol.26. P.398-407. DOI: 10.1519/JSC.0b013e318225a26f

25. Rønnestad BR, Hansen EA, Raastad T. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists // Eur J Appl Physiol. 2010. Vol.108. P.965-975. DOI: 10.1007/s00421-009-1307-z.

26. Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y. Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training // Eur J Appl Physiol. 2013. Vol.113. P. 2691-2703. DOI: 10.1007/s00421-013-2700-1.

27. Franchi MV, Atherton PJ, Reeves ND, Flück M, Williams J, Mitchell WK, Selby A, Beltran Valls RM, Narici MV. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle // Acta Physiol. 2014. Vol.210. P. 642-654. DOI: 10.1111/apha.12225.

28. Roman WJ, Fleckenstein J, Stray-Gundersen J, Alway SE, Peshock R, Gonyea WJ. Adaptations in the elbow flexors of elderly males after heavy-resistance training // J Appl Physiol. 1993. Vol.74. P. 750-754. DOI: 10.1152/jappl.1993.74.2.750.

29. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps // Eur J ApplPhysiolOccup Physiol. 1989. Vol.59, №4. P. 310-319. DOI: 10.1007/BF02388334.

30. Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P. Human quadriceps crosssectional area, torque and neural activation during 6 months strength training // ActaPhysiol Scand. 1996. Vol.157, №2. P. 175- 186. DOI: 10.1046/j.1365-201X.1996.483230000.x.

31. Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sänger A, Eckstein F. Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas: quantitative assessment using MRI // Magn Reson Med. 2010. Vol.64, №2. P. 1713-1720. DOI: 10.1002/mrm.22550.

32. Izquierdo M, Häkkinen K, Ibáñez J, Kraemer WJ, Gorostiaga EM. Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men // Eur J Appl Physiol. 2005. Vol.94, №1. P. 70-75. DOI: 10.1007/s00421-004-1280-5.

33. Steele J, Butler A, Comerford Z, Dyer J, Lloyd N, Ward J, Fisher J, Gentil P, Scott C, Ozaki H. Similar acute physiological responses from effort and duration matched leg press and recumbent cycling tasks // Peer J. 2018. Vol.28, №6. P. 1-28. DOI: 10.7717/peerj.4403.


Для цитирования:


Мирошников А.Б., Волков В.В., Смоленский А.В. Влияние высокоинтенсивной интервальной тренировки на гипертрофию, силу и окислительные способности рабочих мышц спортсменов силовых видов спорта: поперечное исследование. Спортивная медицина: наука и практика. 2019;9(4):25-32. https://doi.org/10.17238/ISSN2223-2524.2019.4.25

For citation:


Miroshnikov A.B., Volkov V.V., Smolensky A.V. The effect of high-intensity interval training on hypertrophy, strength and oxidative capacity of active muscles in power sports athletes: a cross-sectional study. Sports medicine: research and practice. 2019;9(4):25-32. (In Russ.) https://doi.org/10.17238/ISSN2223-2524.2019.4.25

Просмотров: 16


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)