The effect of high-intensity interval training on hypertrophy, strength and oxidative capacity of active muscles in power sports athletes: a cross-sectional study
https://doi.org/10.17238/ISSN2223-2524.2019.4.25
Abstract
Objective: the purpose of the study was to evaluate how high-intensity interval training affects strength, oxidative capacity and hypertrophy of working muscles in power sports athletes. Materials and methods: the study included 35 male power sports athletes (powerlifting), the average age was 30 ± 5,4 years. Metabolic exhaled gas analysis (determination of the anaerobic threshold and heart rate, maximum oxygen consumption and pedaling power at the maximum oxygen consumption, oxygen consumption at the anaerobic threshold and maximum oxygen consumption), ultrasonographic measurements of the anatomical cross-sectional area of the quadriceps femoris, the assessment of the maximum strength of the quadriceps femoris and methods of mathematical statistics were utilized. Athletes were subject to bicycle ergometry testing 3 times a week during 120 days according to the following protocol: 7 intervals with pedaling power of 100% of the maximum oxygen consumption for 2 min, and intervals with a heart rate of 85% of the anaerobic threshold for 2 min. Results: after 120 days of training, power athletes significantly increased the anaerobic threshold, power and oxygen consumption by 22,7 and 14,5%, respectively, as well as power and oxygen consumption at the level of maximum oxygen consumption by 18,5 and 13,6%, respectively. Regular high-intensity training on a bicycle ergometer causes muscle-specific hypertrophy, which leads to regional changes in the quadriceps femoris muscle and an increase in its strength by 6,5%. Conclusions: the aerobic workout training protocol that we developed allows athletes to effectively and safely increase the oxidizing capacities of active muscles, while not losing their main strength indicators.
About the Authors
A. B. MiroshnikovRussian Federation
Alexander B. Miroshnikov, Ph.D. (Biology), Associate Professor of the Department of Sports Medicine
Moscow
+7 (985) 125-12-23
V. V. Volkov
Russian Federation
Vasily V. Volkov, Graduate student of the Department of Sports Medicine
Moscow
A. V. Smolensky
Russian Federation
Andrey V. Smolensky, MD, D.Sc. (Medicine), Prof., Head of the Department of Sports Medicine
Moscow
References
1. Lindow T, Brudin L, Elmberg V, Ekström M. Long-term follow-up of patients undergoing standardized bicycle exercise stress testing - New recommendations for grading of exercise capacity are clinically relevant. Clin Physiol Funct Imaging 2020 Mar 27;40(2):83-90. DOI: 10.1111/cpf.12606.
2. Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med. Sci. Sports Exerc. 1988;20(5):132-134.
3. Mancia G, De Backer G, Dominiczak A. European Guidelines for the management of arterial hypertension. Eur. Heart J. 2007;28:1462-1536.
4. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293-307. DOI: 10.1519/JSC.0b013e31823a3e2d.
5. Sabag A, Najafi A, Michael S, Esgin T, Halaki M, Hackett D. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis. J Sports Sci. 2018;36(21):2472- 2483. DOI:10.1080/02640414.2018.1464636.
6. Nuell S, Illera-Domínguez VR, Carmona G, Alomar X, Padullés JM, Lloret M, Cadefau JA. Hypertrophic muscle changes and sprint performance enhancement during a sprint-based training macrocycle in national-level sprinters. Eur J Sport Sci. 2019;26:1-10. DOI: 10.1080/17461391.2019.1668063.
7. Kristoffersen M, Sandbakk Ø, Rønnestad BR, Gundersen H. Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Front Physiol. 2019 Aug;28(10):1132. DOI: 10.3389/fphys.2019.01132.
8. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020-2027. DOI:10.1152/jappl.1986.60.6.2020.
9. Pallarés JG, Morán-Navarro R, Ortega JF, FernándezElías VE, Mora-Rodriguez R. Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists. PLoS One. 2016;11(9):1-16. DOI: 10.1371/journal.pone.0163389.
10. Brzycki M. Strength testing: prediction of one-rep max from reps-to-fatigue. J Health Phys Educ Rec Dance. 1993;64:88-90. DOI:10.1080/07303084.1993.10606684.
11. Holloszy JO. Biochemical Adaptations in Muscle. J Biol Chem. 1967;242(9):2278-2282.
12. Oliveira AN, Hood DA. Exercise is Mitochondrial Medicine for Muscle. Sports Medicine and Health Science. 2019;1(1): 11-18.
13. Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg HC, Suetta C, Krustrup P, Elemans CPH, Ørtenblad N. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol. 2017;595(9):2839-2847. DOI:10.1113/JP273040.
14. Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP. Matched work high-intensity interval and continuous running induce similar increases in PGC-1 mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112(7):1135-1143. DOI: 10.1152/japplphysiol.01040.2011.
15. Gibala MJ, Little JP. Physiological basis of brief vigorous exercise to improve health. J Physiol. 2019:1-22. DOI: 10.1113/JP276849.
16. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915-2930. DOI: 10.1113/JP273196.
17. Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol. 2017;15(8):713. DOI: 10.3389/fphys.2017.00713.
18. Bishop D, Jenkins DG, Mackinnon LT, McEniery M, Carey MF. The effects of strength training on endurance performance and muscle characteristics. Med Sci Sports Exerc. 1999;31(6):886- 891. DOI: 10.1097/00005768-199906000-00018.
19. Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol Regul Integr Comp Physiol. 1999;276:591-596. DOI: 10.1152/ajpregu.1999. 276.2.R591.
20. Tesch PA, Thorsson A, Essen-Gustavsson B. Enzyme activities of FT and ST muscle fibers in heavy-resistance trained athletes. J Appl Physiol. 1989;67(1):83-87. DOI: 10.1152/jappl.1989.67.1.83.
21. Tesch PA, Thorsson A, Kaiser P. Muscle capillary supply and fiber type characteristics in weight and power lifters. J Appl Physiol. 1984;56(1):35-38. DOI: 10.1152/jappl.1984.56.1.35.
22. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, Trappe TA, Trappe S. Aerobic exercise training induces skeletal muscle hypertrophy and agedependent adaptations in myofiber function in young and older men. J Appl Physiol. 2012;113(9):1495-1504. DOI: 10.1152/japplphysiol.00786.2012.
23. McPhee JS, Williams AG, Degens H, Jones DA. Interindividual variability in adaptation of the leg muscles following a standardised endurance training programme in young women. Eur J Appl Physiol. 2010;109(6):1111-1118. DOI: 10.1007/s00421-010-1454-2.
24. Farup J, Kjølhede T, Sørensen H, Dalgas U, Møller AB, Vestergaard PF, Ringgaard S, Bojsen-Møller J, Vissing K. Muscle morphological and strength adaptations to endurance vs. resistance training. J Strength Cond Res. 2012;26:398-407. DOI: 10.1519/JSC.0b013e318225a26f.
25. Rønnestad BR, Hansen EA, Raastad T. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol. 2010;108(5):965-975. DOI: 10.1007/s00421-009-1307-z.
26. Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y. Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur J Appl Physiol. 2013 Nov;113(11):2691-2703. DOI: 10.1007/s00421-013-2700-1.
27. Franchi MV, Atherton PJ, Reeves ND, Flück M, Williams J, Mitchell WK, Selby A, Beltran Valls RM, Narici MV. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 2014;210:642-654. DOI: 10.1111/apha.12225.
28. Roman WJ, Fleckenstein J, Stray-Gundersen J, Alway SE, Peshock R, Gonyea WJ. Adaptations in the elbow flexors of elderly males after heavy-resistance training. J Appl Physiol. 1993;74: 750-754. DOI: 10.1152/jappl.1993.74.2.750.
29. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310-319. DOI: 10.1007/BF02388334.
30. Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand. 1996;157(2):175-186. DOI: 10.1046/j.1365-201X.1996.483230000.x.
31. Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sänger A, Eckstein F. Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas: quantitative assessment using MRI. Magn Reson Med. 2010;64(6):1713-1720. DOI: 10.1002/mrm.22550.
32. Izquierdo M, Häkkinen K, Ibáñez J, Kraemer WJ, Gorostiaga EM. Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol. 2005;94(1-2):70-5. DOI: 10.1007/s00421-004-1280-5.
33. Steele J, Butler A, Comerford Z, Dyer J, Lloyd N, Ward J, Fisher J, Gentil P, Scott C, Ozaki H. Similar acute physiological responses from effort and duration matched leg press and recumbent cycling tasks. Peer J. 2018;28(6):1-28. DOI: 10.7717/peerj.4403.
Review
For citations:
Miroshnikov A.B., Volkov V.V., Smolensky A.V. The effect of high-intensity interval training on hypertrophy, strength and oxidative capacity of active muscles in power sports athletes: a cross-sectional study. Sports medicine: research and practice. 2019;9(4):25-32. (In Russ.) https://doi.org/10.17238/ISSN2223-2524.2019.4.25