Exercise muscle damage: the role of ACTN3 gene polymorphism
https://doi.org/10.17238/ISSN2223-2524.2020.2.41
Abstract
Even the most experienced athletes are not safe from various types of muscle damage (cramp, contracture, sprain, tear and tear of the muscle). Nowadays, certain gene variations or polymorphisms associated with muscle damage caused by exercise are known. This review focuses on the polymorphism of the ACTN3 gene (Alpha-actinin-3 R577X, rs1815739), which plays an important role in the initial phase of muscle damage caused by exercises. Knowledge about how someone can respond to a specific type of exercises can help coaches individualize their athletes’ training exercises and thereby reduce the risk of injuries associated with overexertion. The purpose of this review is to provide a critical analysis of the literature on ACTN3 gene polymorphism associated with exercise-induced muscle damage both in young and old people, and the review highlights the potential mechanisms underlying these associations, which will provide a better understanding of exercise-induced muscle damage.
About the Authors
E. V. OrekhovskayaRussian Federation
Evgenia V. Orekhovskaya, Lecturer of the Department of Physical training education
Kemerovo
A. V. Minin
Russian Federation
Artyom V. Minin, Senior of the Institute of Fundamental Sciences
+7(923)616-45-52
Kemerovo
References
1. Hyldahl RD, Hubal MJ. Lengthening our perspective: morphological, cellular and molecular respones to eccentric exercise. Muscle Nerve. 2014;49(2):155-170.
2. Peake J, Nosaka KK, Suzuki K. Characterization of infl ammatory responses to eccentric exercise in humans. Exerc Immunol Rev. 2005;11:64-85.
3. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012; 2012:960363.
4. Brown S, Day S, Donnelly A. Indirect evidence of human skeletal muscle damage and collagen breakdown aft er eccentric muscle actions. J Sports Sci. 1999;17(5):397-402.
5. Roig M, O’Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, Reid WD. Th e eff ects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analyses. Br J Sports Med. 2009;43(8):556-68.
6. Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and infl ammation during recovery from exercise. J Appl Physiol. 2017;122(3):559-570.
7. Hill EC, Housh TJ, Keller JL, Smith CM, Schmidt RJ, Johnson G. Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood fl ow restriction resistance training. Eur J Appl Physiol. 2018;118(9):1831-1843.
8. Chavez LO, Leon M, Einav S, Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care.2016;20(1):135.
9. Paulsen G, Benestad HB. Muscle soreness and rhabdomyolysis. Tidsskr Nor Laegeforen. 2019; 139:10.
10. Clarkson PM, Hoff man EP, Zambraski E, Gordish-Dressman H, Kearns A, Hubal M, Harmon B, Devaney JM. ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol. 2005;99(2):564-569.
11. Conceição MS, Libardi CA, Nogueira FRD, Bonganha V, Gáspari AF, Chacon-Mikahil MPT, Cavaglieri CR, Madruga VA. Effects of eccentric exercise on systemic concentrations of pro- and anti-inflammatory cytokines and prostaglandin (E2): comparison between young and postmenopausal women. Eur J Appl Physiol. 2012;112(9):3205-13.
12. Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Front Physiol. 2017;8:1080.
13. Broos S, Malisoux L, Th eisen D, Van Th ienen R, Francaux M, Th omis MA, Deldicque L. Th e stiff ness response of type IIa fi bres aft er eccentric exercise-induced muscle damage is dependent on ACTN3 r577X polymorphism. Eur J Sport Sci. 2019;19(4):480-489.
14. Del Coso J, Hiam D, Houweling P, Pérez LM, Eynon N, Lucia A. More than a ‘speed gene’: ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol. 2019;119(1):49-60.
15. Heff ernan SM, Kilduff LP, Erskine RM, Day SH, Stebbings GK, Cook CJ, Raleigh SM, Bennet MA, Wang G, Collins M, Pitsiladis YP, Williams AG. COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby. BMC Genomics. 2017;18(8):820.
16. Bell RD, Shultz SJ, Wideman L, Henrich VC. Collagen gene variants previously associated with anterior cruciate ligament injury risk are also associated with joint laxity. Sports Health. 2012;4(4):312-8.
17. Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K. Diff erential expression of the actin binding proteins, α-actinin-2 and -3, in diff erent species: implications for the evolution of functional redundancy. Hum Mol Genet. 2001;10(13):1335-1346.
18. Goleva-Fjellet S, Bjurholt AM, Kure EH, Larsen IK, Storen O, et al. Distribution of allele frequencies for genes associated with physical activity and/or physical capacity in a homogenous Norwegian cohort- a cross-sectional study. BMC Genet. 2020;21(1):8.
19. Eroğlu O, Zileli R, Nalbant MA, Ulucan K. Prevalence of alpha actinin-3 gene (ACTN3) R577X and angiotensin converting enzyme (ACE) insertion/deletion gene polymorphisms in national and amateur Turkish athletes. Cell Mol Biol (Noisy-le-grand). 2018;64(5):24-28.
20. Papadimitriou ID, Lockey SJ, Voisin S, Herbert AJ, Garton F, Houweling PJ, Cieszczyk P, Maciejewska-Skrendo A, Sawczuk M, Massidda M, Calò CM, Astratenkova IV, Kouvatsi A, Druzhevskaya AM, Jacques M, Ahmetov II, Stebbings GK, Heff ernan S, Day SH, Erskine R, Pedlar C, Kipps C, North KN, Williams AG, Eynon N. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics. 2018;19(1):13.
21. Papadimitriou ID, Lucia A, Pitsiladis YP, Pushkarev VP, Dyatlov DA, Orekhov EF, Artioli GG, Guilherme JPLF, Lancha Jr AH, Ginevičienė V, Cieszczyk P, Maciejewska-Karlowska A, Sawczuk M, Muniesa CA, Kouvatsi A, Massidda M, Calò CM, Garton F, Houweling PJ, Wang G, Austin K, Druzhevskaya AM, Astratenkova IV, Ahmetov II, Bishop DJ, North KN, Eynon N. ACTN3 R577X and ACE I/D gene variants infl uence performance in elite sprinters: a multi-cohort study. BMC Genomics. 2016;17:285.
22. Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. Th e individual and combined infl uence of ACE and ACTN3 genotypes on muscle phenotypes before and aft er strength training. Scand J Med Sci Sports. 2014;24(4):642-648.
23. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627-631.
24. Yang R, Shen X, Wang Y, Voisin S, Cai G, Fu Y, Xu W, Eynon N, Bishop D, Yan X. ACTN3 R577X Gene Variant Is Associated With Muscle-Related Phenotypes in Elite Chinese Sprint/ Power Athletes. J Strength Cond Res. 2017;31(4):1107-1115.
25. Bondareva EA, Negasheva MA. Genetic aspects of athletic performance and sports selection. Biol Bull Rev 2017;7:344- 353. (In Russ). DOI:10.1134/S2079086417040028
26. Aksenov MO, Andryuschenko LB, Filimonova SIv. Search for «the sports gene talent» in endurance sports. Physical culture and health. 2018;4(68):52-54. (In Russ)
27. Makarov SV, Negasheva MA, Mil’gotina АВ, Piskorskaya IV, Bychkovskaya LS, Spitsyn VA. Study of genetic polymorphism relationship on genes angiotensin converting enzyme and actinin-3 with anthropometric parameters of young men and women. Medical Genetics. 2007;19(1):43-47 (In Russ).
28. Weyerstrass J, Stewart K, Wesselius A, Zeegers M. Nine genetic polymorphisms associated with power athlete status – a meta-analysis. J Sci Med Sport. 2018;21(2):213-220.
29. Yang Y, Li X, Zhou F, Gao C, Li M, Gao L. Th e association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One. 2013;8(1):e54685.
30. Clarkson PM, Devaney JM, Gordish-Dressman H, Th ompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Hoff man EP. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol. 2005;99(1):154-163.
31. Eynon N, Duarte JA, Oliveira J, Sagiv M, Yamin C, Meckel Y, Sagiv M, Goldhammer E. ACTN3 R577X polymorphism and Israeli top-level athletes. Int J Sports Med. 2009;30(9):695-698.
32. Ginszt M, Michalak-Wojnowska M, Gawda P, Wojcierowska-Litwin M, Korszen-Pilecka I, Kusztelak M, Muda R, Filip AA, Majcher P. ACTN3 genotype in professional sport climbers. J Strength Cond Res. 2018;32(5):1311-1315.
33. Kikuchi N, Nakazato K, Min SK, Ueda D, Igawa S. Th e ACTN3 R577X polymorphism is associated with muscle power in male Japanese athletes. J Strength Cond Res. 2014;28(7):1783-1789.
34. Walsh S, Liu D, Metter EJ, Ferrucci L, Roth SM. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol. 2008;105(5):1486-1491.
35. Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. Th e individual and combined infl uence of ACE and ACTN3 genotypes on muscle phenotypes before and aft er strength training. Scand J Med Sci Sports. 2014; 24(4):642-648.
36. Pimenta EM, Coelho DB, Cruz IR, Morandi RF, Veneroso CE, Pussieldi GA, Carvalho MR, Silami-Garcia E, Fernandez JAP. Th e ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol. 2012;Vol.112(4). P.1495-503.
37. Deuster PA, Contreras-Sesvold CL, O’Connor FG, Campbell WW, Kenney K, Capacchione J, Landau M, Muldon S, Rushing E, Heled Y. Genetic polymorphisms associated with exertional rhabdomyolysis. Eur J Appl Physiol. 2013;113(8):1997-2004.
38. Vincent B, Windelinckx A, Nielens H, Ramaekers M, Van Leemputte M, Hespel P, Th omis MA. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol. 2010;109(2):564-573.
39. Seto JT, Lek M, Quinlan KG, Houweling PJ, Zheng XF, Garton F, MacArthur D, Raft ery JM, Garvey S, Hauser M, Yang N, Head S, North K. Defi ciency of alpha-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum Mol Genet. 2011;20(15):2914-2927.
40. Kim SK, Kleimeyer JP, Ahmed MA, Avins AL, Fredericson M, Dragoo J, Loannidis J. Two genetic loci associated with ankle injury. PLoS One. 2017;12(9):e0185355.
41. Venckunas T, Skurvydas A, Brazaitis M, Kamandulis S, Snieckus A, et al. Human alpha-actinin-3 genotype association with exercise-induced muscle damage and the repeated-bout eff ect. Appl Physiol Nutr Metab. 2012;37(6):1038-1046.
42. Iwao-Koizumi K, Ota T, Hayashida M, Yonetani Y, Nakata K, et al. Th e ACTN3 gene is a potential biomarker for the risk of non-contact sports injury in female athletes. J Mol Biomark Diagn. 2015;6.
43. Venckunas T, Skurvydas A, Brazaitis M, Kamandulis S, Snieckus A, Moran C. Human alpha-actinin-3 genotype association with exercise-induced muscle damage and the repeated-bout effect. Appl Physiol Nutr Metab. 2012;37(6):1038-1046.
44. Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. European journal of applied physiology. 2016;116(9):1595-1625.
45. Head SI, Chan S, Houweling PJ, Quinlan KGR, Murphy R, Wagner S, Friedrich O, North KN. Altered Ca2+ kinetics associated with α-actinin-3 defi ciency may explain positive selection for ACTN3 null allele in human evolution. PLoS Genet. 2015;11(1):e1004862.
46. Moreno V, Areces F, Ruiz-Vicente D, Ordovás JM, Del Coso J. Infl uence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS One. 2020;15(1):e0227548.
47. Massidda M, Voisin S, Culigioni C, Piras F, Cugia P, Yan X, Eynon N, Caló CM. ACTN3 R577X Polymorphism Is Associated With the Incidence and Severity of Injuries in Professional Football Players. Clin J Sport Med. 2019;29(1):57-61.DOI: 10.1097/JSM.0000000000000487.
48. Del Coso J, Valero M, Salinero JJ, Lara B, Díaz G, Gallo-Salazar C, Ruiz-Vicente D, Areces F, Puente C, Carril JC, Cacabelos R. ACTN3 genotype infl uences exercise-induced muscle damage during a marathon competition. Eur J Appl Physiol. 2017;117(3):409-416.
49. Del Coso J, Salinero JJ, Lara B, Gallo-Salazar C, Areces F, Puente C, Herrero D. ACTN3 X-allele carriers had greater levels of muscle damage during a half-ironman. Eur J Appl Physiol. 2017;117(1):151-158.
50. Ben-Zaken S, Eliakim A, Nemet D, Rabinovich M, Kassem E, Meckel Y. ACTN3 Polymorphism: Comparison Between Elite Swimmers and Runners. Sports medicine – open. 2015;1(1):13.
Review
For citations:
Orekhovskaya E.V., Minin A.V. Exercise muscle damage: the role of ACTN3 gene polymorphism. Sports medicine: research and practice. 2020;10(2):41-47. (In Russ.) https://doi.org/10.17238/ISSN2223-2524.2020.2.41