Preview

Sports medicine: research and practice

Advanced search

Influence of exercise on the functional state of erythrocytes membranes

https://doi.org/10.17238/ISSN2223-2524.2020.2.55

Abstract

The article presents the modern data of from national and foreign literature on the problems associated with the influence of the type and intensity of physical activity on the state of red blood cells, both in athletes and in untrained subjects. The article emphasizes the role of intensive training in the damage to the erythrocyte membrane and describes the possible mechanisms of these disorders in athletes of different sports, as well as ways to restore them. The article dwells upon the possibilities to correct red blood cell disorders in various pathologies with physical exercises.

About the Author

M. G. Golubeva
Moscow State University
Russian Federation

Maria G. Golubeva, PhD (Biology), Senior Researcher of the Laboratory of Protective Blood Systems named aft er Professor B.A. Kudryachshov

+7(495)939-26-08

Moscow



References

1. Mihaylov PV, Muravev AV, Ostroumov RS, Muravev AA. Vozrastnyie osobennosti svoystv krovi u trenirovannyih i netrenirovannyih lits. Bezopasnost zdorovya cheloveka. 2016;1:16-29. (In Russ).

2. Golubeva MG. Stressogenic disorders of red blood cells and their correction using regulatory peptides. Successes Physiology. Science. 2018;49(1):3-10. (In Russ).

3. Bushueva NA, Vorobeva NA. Harakteristika sistemyi gemostaza pri fi zicheskih nagruzkah Vestnik Severnogo (Arkticheskogo) federalnogo universiteta. Seriya «Mediko-biologicheskie nauki». 2015;2:62-70. (In Russ).

4. Shifman F. Pathophysiology of blood. English translation M-SPb. Nevsky dialect. 2001;447. (In Russ).

5. Mohandas N, Gallagher PC. Red cell membrane: past, present, and future. Blood. 2008;2(10):3939-3948.

6. Muravev AV, Mihaylov PV, Tihomirova IA. Mikrotsirkulyatsiya i gemoreologiya: tochki vzaimodeystviya. Regionalnoe krovoobraschenie i mikrotsirkulyatsiya. 2017;16(2):90-100. (In Russ).

7. Muravyov AV, Maimistova AA, Roitman EV, Tikhomirova I.A, Chuchkin FA. Studies of erythrocyte deformity in experimental practice. Th rombosis, hemostasis, rheology. 2008;36(4):22-27. (In Russ).

8. Da Silva Garrote-Filho M, Bernardino-Neto M, PehaSilva N. Infl uence of Erythrocyte Membrane Stabilitry in therosclerosis. Curr Atheroscler. Rep. 2017;19(4):17-25.

9. Chou SL, Huang YC, Fu TC, Hsu CC, Wand JS. Cycling Exercise Training Alleviates Hypoxia-Impared Erythrocyte Rheology. Med. Sci Sports Exerc. 2016;48(1):57-65.

10. Martusevich AA, Deryugina A V, Martusevich A K. Functional state of rat’s erythrocytes under diff erent stress conditions. J. Stress Physiol. and Biochem. 2016;12(3):5-11.

11. Medeiros-Lima DJ, Mendes-Ribeiro AC, Brunini TM, Martins MA, Mury WV, Freire RA, Monteiro WD, Farinatti PTV, Matsuura C. Erythrocyte nitric oxide availability and oxidative stress following exercise. Clin Hemorheol Microcirc. 2017;65(3):219-228.

12. Gollasch B, Wu G, Dogan I, Roth M, Gollasch M, Luft FC. Maximal exercise and erythrocyte epoxy fatty acids: a lipodemics study. Physiol. Rep. 2019;22(7):e14275.

13. Osochuk SS, Martsinkevich AF, Osochuk AS. Fiziko-himicheskie svoystva membran eritrotsitov i lipoproteinov vyisokoy platnosti sportsmenov tsiklicheskih vidov sporta Prikl. sport. Nauka. 2016;3(1):84-89. (In Russ).

14. Zavalishina SYu. Maltseva TS. Mikroreologicheskie osobennosti eritrotsitov u regulyarno treniruyuschihsya kandidatov i masterov sporta po legkoy atletike pervogo zrelogo vozrasta Vestnik novyih meditsinskih tehnologiy. 2012;19(2):134-135. (In Russ).

15. Muravyov AV, Koshelev VB, Fadyukova OE, Tikhomirova IA, Maimistova AA, Bulaeva SV. Th e role of activation of the erythrocyte adenylatecyclase system in the change in microreologicalproperties of their membranes. Biochtmistry (Moscow) Supl. Series A: Membrane and Cell Biology. 2011;28(3):174-180. (In Russ).

16. Makhro A, Haider T, Wang J, Bogdanov N, Steff en P, Wagner C, Meyer T, Gassmann M, Hecksteden A, Kaestner L, Bogdanova A. Comparing the impact of an acute exercise bout on plasma amino acid composition, intraerythrocytic Ca (2+) handling, and red cell function in athletes and untrained subjects. Cell Calcium. 2016;60(4):235-44.

17. Muravyov AV, Mikhailova SG, Tikhomirova IA. Th e role of intracellular signaling systems n changes in the micro-rheological properties of red blood cells. Biochtmistry (Moscow) Supl. Series A: Membrane and Cell Biology. 2014;31(4):270-277. (In Russ). DOI: 10.7868/s0233475514040069

18. Golubeva MG. Osmotic Resistance of Erythrocytes, Methods of Determination and Correction, Value at Diff erent Pathologies. Biol.Bull.Rev. 2019;139(5):446-456. (In Russ). DOI:10.1134/s004213241905003X

19. Senturk UK, Gunduz F, Kuru O, Atekin MR, Kipmen D, Yalcin O, Bor-Kucukatay M, Yesilkaya A, Bsdkrut OK. Exercise-induced oxidative stress affects erythrocytes in sedentary rats but not exercise-trained rats. J. Appl. Physiol. 2001;91:1999-2005.

20. Senturk UK, Gunduz F, Kuru O, Kocer G, Ozkaya YG, Yesilkaya A, Bor-Kucukatay M, Uyuklu M, Yalcin O, Baskurt OK. Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans. J. Appl. Physiol. 2005;99(4):1434-1441.

21. Mairbaurl H. Red blood cell in sports: eff ects of exercise and training on oxygen supply by red blood cells. Front Physiol. 2013;12(4):332.

22. Szymura J, Wiecek M, Maciejczyk M, Gradek J, Kantorowicz M, Szygyla Z. Unchanged Erythrocyte Profi le Aft er Exposure to Cryogenic Temperatures in Elder Marathon Runners. Front Physiol. 2018;30(9):659.

23. Levy AP, Asleh R, Blum S, Levy NS, Miller-Lotan R, KaletLitman S, Anbinder Y, Lache O, Nakhoul FM, Asaf R, Farbstein D, Pollak M, Soloveichik YZ, Strauss M, Alshiek J, Livshits A, Schwartz A, Awad H, Jad K, Goldenstein H. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010;12(2):293-304.

24. Lippi G, Sanchis-Gomar F. Epidemiological, biological and clinical update on exercise-Induced hemolysis. Ann. Transel Med. 2019;7(12):270.

25. Nishiie-Yano R, Hirayama S, Tamura M, Kanemochi T, Ueno T, Hirayama A, Hori A, Ai T, Hirose N, Miida T. Hemolysis Is Responsible for Elevation of Serum Iron Concentration Aft er Regular Exercises in Judo Athletes. Biol Trace Elem Res. 2019;30:1981-1983.

26. Terink R, Ten Haaf D, Bongers CWG, Balvers MGJ, Witkamp RF, Mensink M, Eijsvogels MH, Klein Gunnewiek JMT, Hopman MTE. Changes in iron metabolism during prolonged repeated walking exercise in middle-aged men and women. Eur J Appl Physiol. 2018;118(11):2349-2357.

27. Lippi G, Schena F, Salvagno GL, Aloe R, Banfi G, Guidi GC. Foot-strike hemolysis aft er a 60-km ultramarathon. Blood Transfus. 2012;10(3):377-383.

28. Banfi G, Melegati G. Eff ect on sport hemolysis of cold water leg immersion in athletes aft er training sessions. Lab. Hematol. 2008;14(2):15-18.

29. Stankewicz LG, Zemtsova II. Th e infl uence of diff erent densities of antioxidantson peroxide gemolysis of erythrocytes. Vestnik Zaporozhskogo natsionalnogo universiteta. 2012;7(1):183-188. (In Russ).

30. Gwozdzinski K, Pieniazek A, Tabaczar S, Jegier A, Brzezszynska J. Investigation of oxidative stress parameters in different lifespan erythrocete fractions in young untrained men aft er acute exercise. Exp. Physiol. 2017;102(2):190-201.

31. Vezzoli A, Dellanoce C, Mrakic-Sposta S, Montorsi M, Moretti S, Tonini A, Pratali L, Accinni R. Oxidative Stress Assessment in Response to Ultraendurance Exercise: Th iols Redox Status and ROS Production according to Duration of a Competitive Race. Oxid Med Cell Longev. 2016(2):1-13.

32. Brzeszcznska J, Pieniazek A, Gwozdzinski L, Gwozdzinski K, Jegier A. Structural alterations of erythrocyte membrane components induced by exhaustive exercise. Appl. Physiol. Nutr. Metab. 2008;33(6):1223-1231.

33. Huang YC, Hsu CC, Wang JS. High-Intensity Interval Training Improves Erythrocyte Osmotic Deformability. Med Sci Sports Exerc. 2019;51(7):1404-1412.

34. Munoz Marin D, Barrientos G, Alves J, Grijota FJ, Robes MC, Maynar M. Oxidative stress, lipid peroxidation indexes and a ntioxidant vitamins in long and middle distance athletes during a sport season. J. Sports Med Phys Fitness. 2018;58(12):1713-1719.

35. Tuvia S, Moses A, Gulayev N, Levia S, Korenstein R. β-adrenergic agonists regulate cell membrane fl uctuations of human erythrocytes. J. Physiol. 1999;516(3):781-792.

36. Chang AL, Hoehn RS, Jemigan P. Previous cryopreservation alters the natural history of the red blood cell storage lesion. Shock. 2016;46:89-95.

37. Sidorenko SV, Luneva OG, Novozhilova TS. Hemolysis and ATP release from human and rat red blood cells under hypoxia. Biochtmistry (Moscow) Supl.Series A: Membrane and Cell Biology. 2018;35(1):27-33. (In Russ). DOI:10.7868/s0233475518010036

38. Sikora J, Orlov SN, Furuya K, Grygorezyk R. Hemolysis is a primary ATP-release mechanism in human erythrocytes. Blood. 2014;124(13):2150-2157.

39. Robinson Y, Cristancho E, Böning D. Intravascular hemolysis and red cell age in athletes. Med.Sci. Sport. Exerc. 2006;38(3):480-483.

40. Madden J, Drakos SG, Stehlik J, McKellar SH, Rondina MT, Weyrich A, Selzman C. Baseline red blood cell osmotic fragility does not predict the degree of post-LVAD hemolysis. ASAIO J. 2014;60(5):524-528.

41. Paraiso LF, de Freitas MV, Goncalve-E-Oliveira AF, de Almeida Neto OP, Pereira EA, Netto RCM, Cunha LM, Neto MB, de Agostini GG, Resende ES, Penha-Silva N. Infl uence of acute exercise on the human erythrocyte membrane. Int. J Sports Med. 2014;35(13):1072-1077.

42. Paraiso LF, Goncalves-E-Oliveira AF, Cunha LM, de Almeida Neto OP, Pacheco AG, Araujo KBG, Garrote-Filho MS, Neto MB, Penha-Silva N. Eff ects of acuter and Chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers PLoS One. 2017;12(2);e0171318.

43. Mihaylis AA. Kontseptualnaya model stressindutsirovannoy dinamiki kislotno-gemoliticheskoy stoykosti eritrotsitov. Sovremennyie naukoemkie tehnologii; 2010;10:19-23. (In Russ). DOI: 10:1007/s11883-017-0653-2

44. Potapenko YaA, Kyagova AA, Tihomirov AM. Osmoticheskaya ustoychivost eritrotsitov M.: GOUVPOGRMU. 2006, 16p. (In Russ).

45. Kim SW, Jung WS, Park W, Park HY. Twelve Weeks of Combined Resistance and Aerobic Exercise Improves Cardiometabolic Biomarkers and Enhances Red Blood Cell Hemoreological Function in Obese Older Men: A Randomised Controlled Trial. Int.J.Environ Res. Public Health; 2019;16(24):5020.

46. Chirico EN, Faës C, Connes P, Canet-Soulas E, Martin C. Role of Exercise-Induced Oxidative Stress in Sickle Cell Trait and Disease. 2016;46(5):629-639.

47. Grau M Nader E, Jerke M, Schenk A, Renoux C, Dietz T. Impact of A Six Week Training Program on Ventilatory Effi ciency, Red Blood Cell Rheological Parameters and Red Blood Cell Nitric Oxide Signaling in Young Sickle Cell Anemia Patients: A Pilot Study. J Clin Med. 2019;8(12):2155.


Review

For citations:


Golubeva M.G. Influence of exercise on the functional state of erythrocytes membranes. Sports medicine: research and practice. 2020;10(2):55-64. (In Russ.) https://doi.org/10.17238/ISSN2223-2524.2020.2.55

Views: 845


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)