Modern (rational) methods for detecting genetic features of athletes
https://doi.org/10.47529/2223-2524.2021.4.2
Abstract
Molecular genetic methods are an integral part of recent medicine. Polymerase chain reaction, Sanger sequencing, next-generation sequencing are widely used in many areas: diagnostics of infectious, inherited, oncological diseases, prenatal screening, study of polymorphisms that increase the risk of developing multifactorial diseases or promoting development physical qualities necessary to achieve success in sports and competitive activity. The growing demand for genotyping raises a number of ethical and social issues affecting the degree of usefulness of genotyping a healthy person and the scientific reliability of the data obtained using direct-to-consumer genetic testing.
The review presents and systematizes the laboratory diagnostic methods used today to study nucleic acids that carry important information about human health and physical qualities.
About the Authors
A. V. ZholinskyRussian Federation
Anastasia I. Kadykova, doctor of clinical laboratory diagnostics
5, Bolshaya Dorogomilovskaya str., Moscow, 121059, Russia
+7 (960) 878-26-17
A. I. Kadykova
Russian Federation
Anastasia I. Kadykova, doctor of clinical laboratory diagnostics
5, Bolshaya Dorogomilovskaya str., Moscow, 121059, Russia
+7 (960) 878-26-17
V. S. Feshchenko
Russian Federation
Vladimir S. Feshchenko, M.D., Ph.D. (Medicine), Head of the Organizational-Research Department; Assistant Professor of the Department of Rehabilitation, Sports Medicine and Physical Education
5, Bolshaya Dorogomilovskaya str., Moscow, 121059, Russia
5, bld. 2, Ostrovityanova str., Moscow, 117997, Russia
+7 (499) 795-68-53
M. G. Hovhannisyan
Russian Federation
Mkrtych G. Hovhannisyan, M.D., Ph.D. (Biology), Head of the Organizational-Research Department
5, Bolshaya Dorogomilovskaya str., Moscow, 121059, Russia
+7 (499) 795-68-53
A. V. Zorenko
Russian Federation
Anna V. Zorenko, sports medicine physician of the Federal Research and Medical Center
5, Bolshaya Dorogomilovskaya str., Moscow, 121059
+7 (499) 795-68-53
R. V. Deev
Russian Federation
Roman V. Deev, M.D., Ph.D. (Medicine), lead researcher; Head of the Departament of Pathological Anatomy
5, Bolshaya Dorogomilovskaya str., Moscow, 121059, Russia
41 Kirochnaya str., St. Petersburg 191015, Russia
References
1. Carrasco-Ramiro F., Peiro-Pastor R., Aguado B. Human genomics projects and precision medicine. Gene Ther. 2017;24(9):551–561. https://doi.org/10.1038/gt.2017.77
2. Cech P. Arthur Kornberg (1918-2007). Cas. Lek. Cesk. 2009;148(9):471–473.
3. Friedberg E.C. The eureka enzyme: the discovery of DNA polymerase. Nat. Rev. Mol. Cell. Biol. 2006;7(2):143–147. https://doi.org/10.1038/nrm1787
4. Brock T.D., Freeze H. Thermus aquaticus, a Nonsporulating Extreme Thermophile. J. Bacteriol. 1969;98(1):289–297. https://doi.org/10.1128/jb.98.1.289-297.1969
5. Kleppe K., Ohtsuka E., Kleppe R., Molineux I., Khorana H.G. Studies on polynucleotides. J. Mol. Biol. 1971;56(2):341–361. https://doi.org/10.1016/0022-2836(71)90469-4
6. Chien A., Edgar D.B., Trela J.M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 1976;127(3):1550–57. https://doi.org/10.1128/jb.127.3.1550-1557.1976
7. Fore J.Jr., Wiechers I.R., Cook-Deegan R. The effects of business practices, licensing, and intellectual property on development and dissemination of the polymerase chain reaction: case study. J. Biomed. Discov. Collab. 2006;1:7. https://doi.org/10.1186/1747-5333-1-7
8. Perkel J. Guiding our PCR experiments. Biotechniques. 2015;58(5):217–221. https://doi.org/10.2144/000114283
9. Sanger F., Air G.M., Barrell B.G., et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265(5596):687–695. https://doi.org/10.1038/265687a0
10. Sanger F., Nicklen S., Couison A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci USA. 1977;74(12):5463–5467. https://doi.org/10.1073/pnas.74.12.5463
11. Smith M., Brown N.L., Air G.M., Barrell B.G., Coulson A.R., Hutchison C.A., Sanger F. DNA sequence at the C termini of the overlapping genes A and B in bacteriophage phi X174. Nature. 1977;265(5596):702–705. https://doi.org/10.1038/265702a0
12. Slatko B.E., Albright L.M., Tabor S., Ju J. DNA sequencing by the dideoxy method. Curr. Protoc. Mol. Biol. 2001;7:7-4A. https://doi.org/10.1002/0471142727.mb0704as47
13. Slatko B.E., Kieleczawa J., Ju J., Gardner A.F., Hendrickson C.L., Ausube F.M. «First generation» automated DNA sequencing technology. Curr. Protoc. Mol. Biol. 2011;7:7.2. https://doi.org/10.1002/0471142727.mb0702s96
14. Hagemann I.S. Overview of Technical Aspects and Chemistries of Next-Generation Sequencing. In: Clinical Genomics. Academic Press; 2015, p. 3–19. https://doi.org/10.1016/B978-0-12-404748-8.00001-0
15. Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–380. https://doi.org/10.1038/nature03959
16. Shendure J., Porreca G.J., Reppas N.B., Lin X., McCutcheon J.P., Rosenbaum A.M., et al. Accurate multiplex polony sequencing of an evolved bacteriak genome. Science. 2005;309(57-41):1728–1732. https://doi.org/10.1126/science.1117389
17. PacBio announces termination of agreement with Roche Diagnostics. PacBio [Internet]. 2016. Available from: https://www.pacb.com/press_releases/pacbio-announces-termination-ofagreement-with-roche-diagnostics/.
18. Gupta P.K. Single-molecule DNA sequencing technologies for future genomics research. Trends Biotehnol. 2008;26(11):602–611. https://doi.org/10.1016/j.tibtech.2008.07.003
19. Types of nanopores. Nanopore [Internet] Available from: https://nanoporetech.com/how-it-works/types-of-nanopores.
20. Levy S.E., Boone B.E. Next-Generation Sequencing Strategies. Cold Spring Harb. Perspect. Med. 2019;9(7):a025791. https://doi.org/10.1101/cshperspect.a025791
21. Genetic testing. Mayo Clinic [Internet] Available from: https://www.mayoclinic.org/tests-procedures/genetic-testing/about/pac-20384827.
22. yRisk. Genetics in oncology [Internet]. Available at: https://yrisk.ru/ (In Rus.).
23. OMIM — Online Mendelian Inheritance in Man [Internet]. Available from: https://www.omim.org/about
24. Genetico. Future Inside [Internet]. Available from: https://genetico.ru/price/genetico-karta-geneticheskih-riskov (In Russ.).
25. Sychev D.A., Ramenskaia G.V., Ignat’ev I.V., Kukes V.G. Clinical farmacology. Moscow: GEOTAR-Media Publ; 2007 (In Russ.).
26. Kuzmina T.E., Timokhina E.V., Ignatko I.V. Lebedev V.A. Prenatal diagnostics in the i trimester of pregnancy: the current state of the problem. Arkhiv akusherstva i ginekologii im. V.F. Snegireva = V.F.Snegirev Archives of Obstetrics and Gynecology. 2019;6(4):178–184 (In Russ.). https://doi.org/10.18821/2313-8726-2019-6-4-178-184
27. Glinkina Zh.I., Kulakova E.V., Dmitrieva N.V. Mosesova Yu.E., Gubaeva Z.M., Gokhberg Ya.A. Preimplantation testing of embryos by high-throughput sequencing in married couples with translocations in the karyotype. Doctor.Ru. 2020;19(1):25–29 (In Russ.). https://doi.org/10.31550/1727-2378-2020-19-1-25-29
28. Solovyova E.V., Nazarenko L.P., Minaicheva L.I., Svetlakov A.V. Preimplantation genetic diagnosis (testing) of monogenic diseases: indications and ethical issues. Meditsinskaya genetika = Medical Genetics 2019;18(3):13–25 (In Russ.). https://doi.org/10.25557/2073-7998.2019.03.13-25
29. Isaev A.A., Deev R.V., Kuliev A. First experience of hematopoietic stem cell transplantation treatment of Shwachman– Diamond syndrome using unaffected HLA–matched sibling donor produced through preimplantation HLA typing. Bone Marrow Transplant. 2017;52(9):1249–1252. https://doi.org/10.1038/bmt.2017.46
30. Deryabina S.S. Neonatal screening: ethical issues of expanding the spectrum of screened diseases. Voprosy sovremennoi pediatrii = Current Pediatrics. 2015;14(6):714–723 (In Russ.). https://doi.org/10.15690/vsp.v14i6.1482
31. National Center for Biotechnology. Genetic Testing Registry [Internet]. Available from: https://www.ncbi.nlm.nih.gov/gtr/.
32. Uyb V.V., Miroshnikov Yu.V., Samoilov A.S., eds. Medical and biomedical support of elite sport: results and prospects for the development of the Center for Physical Therapy and Sports Medicine of the Federal Medical and Biological Agency. Tula: Akvarius Publ.; 2014,. p. 506–27 (In Russ.).
33. Williams A.M., Reilly T. Talent identification and development in soccer. J. Sports Sci. 2000;18(9):657–667. https://doi.org/10.1080/02640410050120041
34. Moran C.N., Pitsiladis Y.P. Tour de France Champions born or made: Where do we take the genetics of performance? J. Sports Sci. 2017;35(14):1411–1419. https://doi.org/10.1080/02640414.2016.1215494
35. Ahmetov I.I., Egorova E.S., Gabdrakhmanova L.J., Fedotovskaya O.N. Genes and athletic performance: An update. Med. Sports Sci. 2016;61:41–54. https://doi.org/10.1159/000445240
36. Yang N., MacArthur D.G., Gulbin J.P., Hahn A.G., Beggs A.H., Easteal S., North K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003;73(3):627–631. https://doi.org/10.1086/377590
37. Berman Y., North K.N. A gene for speed: The emerging role of α-actinin-3 in muscle metabolism. Physiology. 2010;25(4):250–259. https://doi.org/10.1152/physiol.00008.2010
38. MacArthur D.G., North K.N. A gene for speed? The evolution and function of α-actinin-3. Bioessays. 2004;26(7):786–795. https://doi.org/10.1002/bies.20061
39. National Center for Biotechnology. Gene [Internet]. Available from: https://www.ncbi.nlm.nih.gov/gene/
40. Webborn N., Williams A., McNamee M., et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br. J. Sports Med. 2015;49(23):1486–1491. https://doi.org/10.1136/bjsports-2015-095343
41. Krell J. Genetic testing can’t capture complexity of athletic performance. Global Sport Matters [Internet]. 2019. Available from: https://globalsportmatters.com/science/2019/05/20/genetictesting-cant-capture-complexity-of-athletic-performance/
42. Mattson C.M., Wheeler M.T., Waggot D., et al. Sports genetics moving forward: lessons learned from medical research. Physiological Genomics. 2016;48(3):175–182. https://doi.org/10.1152/physiolgenomics.00109.2015
43. Collier R. Genetic tests for athletic ability: Science or snake oil? CMA J. 2012;184(1):E43-E44. https://doi.org/10.1503/cmaj.109-4063
44. European Commission. The Independent expert group. Ethical, legal and social aspects of genetic testing: research, development and clinical application. Luxemburg: Office for Official Publications of European Communities; 2004.
45. Izhevskaya V.L. Ethical and legal aspects of genetic testing and screening. In: Bioethics and Humanitarian Expertise. Moscow: IF-RAN; 2007, p. 78–95 (In Russ.).
46. International Bioethics Committee. International Declaration on Human Genetic Data. Paris: UNESCO; 2003.
47. Universal Declaration on the Human Genome and Human Rights. Paris: UNESCO; 1977.
48. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine [Internet]. Oviedo; 1997. Available from: https://rm.coe.int/168007cf98
49. Council of Europe on bioethical matters. Strasbourg; 2014.
50. Vlahovich N., Fricker P.A., Brown M.A.,Hughes D. Ethics of genetic testing and research in sport: a position statement from the Australian Institute of Sport. Br. J. Sports Med. 2017;51(1):5–11. https://doi.org/10.1136/bjsports-2016-096661
51. National Human Genome Research Institute Home [Internet]. Available from: https://www.genome.gov/.
52. Pickering C., Kiely J., Grgic J., et al. Can Genetic Testing Identify Talent for Sport? Genes. 2019;10(12):972. https://doi.org/10.3390/genes10120972
Review
For citations:
Zholinsky A.V., Kadykova A.I., Feshchenko V.S., Hovhannisyan M.G., Zorenko A.V., Deev R.V. Modern (rational) methods for detecting genetic features of athletes. Sports medicine: research and practice. 2021;11(4):5-16. (In Russ.) https://doi.org/10.47529/2223-2524.2021.4.2