Преаналитические особенности определения циркулирующих микроРНК как новых специфических биомаркеров реакции организма на физическую нагрузку
https://doi.org/10.47529/2223-2524.2021.4.1
Аннотация
МикроРНК — малые некодирующие одноцепочечные РНК, длиной от 18 до 25 нуклеотидов, которые регулируют экспрессию генов на посттранскрипционном уровне посредством специфического связывания с мРНК-мишенью, приводящего к ее деградации. В последние десятилетия разработка технологий определения профилей экспрессии микроРНК стала важной частью исследовательских проектов, а роль микроРНК в качестве потенциальных высокоинформативных молекулярных биомаркеров различных физиологических и патологических процессов в организме активно изучается научным сообществом. В частности, физическая активность является важным модифицирующим фактором для циркулирующих микроРНК. В отличие от классических биохимических показателей крови, которые могут изменяться с течением времени в зависимости от температуры и условий хранения образца, микроРНК остаются стабильными при хранении и даже при многократных циклах замораживания-оттаивания, что делает их привлекательной и легкодоступной мишенью для обнаружения. Тем не менее определение профиля экспрессии микроРНК в клинической практике все еще является затруднительным из-за высокой неоднородности аналитических процедур, используемых для испытаний. В спортивной медицине особо важным является преаналитический этап, так как часто условия отбора биопроб не стандартизированы и могут влиять на результат анализа. В данном обзоре показана роль микроРНК в качестве новых чувствительных биомаркеров эффективности тренировочного процесса и регуляторов реакции организма в ответ на физическую активность, а также рассмотрены некоторые преаналитические аспекты анализа профилей экспрессии микроРНК.
Об авторах
П. В. ПостниковРоссия
Постников Павел Викторович, к.х.н., начальник отдела допингового контроля
105005, Россия, Москва, Елизаветинский пер., 10, стр. 1.
И. В. Пронина
Россия
Пронина Ирина Валерьевна, к.б.н., главный специалист отдела допингового контроля; старший научный сотрудник лаборатории патогеномики и транскриптомики
105005, Россия, Москва, Елизаветинский пер., 10, стр. 1
125315, Россия, Москва, ул. Балтийская, 8
Список литературы
1. Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. Themicro RNA spectrumin 12 body fluids. Clin. Chem. 2010;56(11):1733–1741. https://doi.org/10.1373/clinchem.2010.147405
2. Liang H., Gong F., Zhang S., Zhang C.Y., Zen K., Chen X. The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids. Wiley Interdiscip. Rev. RNA. 2014; 5(2): 285–300. https://doi.org/10.1002/wrna.1208
3. Fazmin I. T., Achercouk Z., Edling C. E., Said A., Jeevaratnam K. Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules. 2020;10(10):1354. https://doi.org/10.3390/biom10101354
4. Mumford S.L., Towler B.P., Pashler A.L., Gilleard O., Martin Y., Newbury S.F. Circulating MicroRNA Biomarkers in Melanoma: Tools and Challenges in Personalised Medicine. Biomolecules. 2018;8(2):21. https://doi.org/10.3390/biom8020021
5. Butz H., Patócs A. MicroRNAs in endocrine tumors. EJIFCC. 2019;30(2):146–164.
6. do Amaral A.E., Cisilotto J., Creczynski-Pasa T.B., de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol. Res. 2018;128:274–287. https://doi.org/10.1016/j.phrs.2017.10.002
7. Felekkis K., Papaneophytou C. Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. Int. J. Mol. Sci. 2020;21(2):561. https://doi.org/10.3390/ijms21020561
8. Hüttenhofer A., Mayer G. Circulating miRNAs as biomarkers of kidney disease. Clin. Kidney J. 2017;10(1):27–29. https://doi.org/10.1093/ckj/sfw075
9. Grillari J., Mäkitie R. E., Kocijan R., Haschka J., Vázquez D.C., Semmelrock E., Hackl M. Circulating miRNAs in bone health and disease. Bone. 2021;145:115787. https://doi.org/10.1016/j.bone.2020.115787
10. Xie F., Liu Y.-L., Chen X.-Y., Li Q., Zhong J., Dai B.-Y., Shao X.-F., Wu G.-B. Role of MicroRNA, LncRNA, and Exosomes in the Progression of Osteoarthritis: A Review of Recent Literature. Orthop. Surg. 2020;12(3):708–716. https://doi.org/10.1111/os.12690
11. Tiwari A., Mukherjee B., Dixit M. MicroRNA Key to Angiogenesis Regulation: MiRNA Biology and Therapy. Curr. Cancer Drug Targets. 2018;18(3):266–277. https://doi.org/10.2174/1568009617666170630142725
12. Mahesh G., Biswas R. MicroRNA–155: A Master Regulator of Inflammation. J. Interferon. Cytokine Res. 2019;39(6):321–330. https://doi.org/10.1089/jir.2018.0155
13. Kamity R., Sharma S., Hanna N. MicroRNA–Mediated Control of Inflammation and Tolerance in Pregnancy. Front Immunol. 2019;10:718. https://doi.org/10.3389/fimmu.2019.00718
14. Pfaff N., Moritz T., Thum T., Cantz T. miRNAs involved in the generation, maintenance, and differentiation of pluripotent cells. J. Mol. Med. 2012;90(7):747–752. https://doi.org/10.1007/s00109-012-0922-z
15. Cheng A.M., Byrom M.W., Shelton J., Ford L.P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33(4):1290–1297. https://doi.org/10.1093/nar/gki200
16. Baggish A.L., Hale A., Weiner R.B., Lewis G.D., Systrom D., Wang F., Wang T.J., Chan S.Y. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 2011;589(Pt 16):3983–3994. https://doi.org/10.1113/jphysiol.2011.213363
17. Yin X., Cui S., Li X., Li W., Lu Q.J., Jiang X.H., Wang H., Chen X., Ma J.Z. Regulation of Circulatory Muscle–specific MicroRNA during 8 km Run. Int. J. Sports Med. 2020; 41(9):582–588. https://doi.org/10.1055/a-1145-3595
18. Caria A.C.I., Nonaka C.K, V., Pereira C.S., Soares M.B.P., Macambira S. G., de Freitas Souza B. S. Exercise Training–Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int. J. Mol. Sci. 2018;19(11):3608. https://doi.org/10.3390/ijms19113608
19. Bandara K.V., Michael M.Z., Gleadle J.M. MicroRNA Biogenesis in Hypoxia. Microrna. 2017;6(2):80–96. https://doi.org/10.2174/2211536606666170313114821
20. Crosby M.E., Devlin C.M., Glazer P.M., Calin G.A., Ivan M. Emerging roles of microRNAs in the molecular responses to hypoxia. Curr. Pharm. Des. 2009;15(33):3861–3866. https://doi.org/10.2174/138161209789649367
21. Zhao J., Florentin J., Tai Y.-Y., Torrino S., Ohayon L., Brzoska T., et al. Long Range Endocrine Delivery of Circulating miR–210 to Endothelium Promotes Pulmonary Hypertension. Circ. Res. 2020;127(5):677–692. https://doi.org/10.1161/CIRCRESAHA.119.316398
22. Binderup H.G., Madsen J.S., Heegaard N.H.H., Houlind K., Andersen R.F., Brasen C.L. Quantification of microRNA levels in plasma — Impact of preanalytical and analytical conditions. PLoS One. 2018;13(7):e0201069. https://doi.org/10.1371/journal.pone.0201069
23. Lee R.C., Feinbaum R.L., Ambros V. The C. elegansheterochronic gene lin–4 encodessmall RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y
24. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genescoding for small expressed RNAs. Science. 2001;294(5543):853–858. https://doi.org/10.1126/science.1064921
25. Reinhart B.J., Weinstein E.G., Rhoades M.W., Bartel B., Bartel D.P. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–1626. https://doi.org/10.1101/gad.1004402
26. Grundhoff A., Sullivan C.S. Virus–encoded microRNAs. Virology. 2011;411(2):325–343. https://doi.org/10.1016/j.virol.2011.01.002
27. Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:140–144. https://doi.org/10.1093/nar/gkj112
28. Kim V.N., Nam J.W. Genomics of microRNA. Trends Genet. 2006;22(3):165–173. https://doi.org/10.1016/j.tig.2006.01.003
29. Ghorai A., Ghosh U. miRNA gene counts in chromosomes vary widely in a speciesand biogenesis of miRNA largely depends on transcription or post–transcriptionalprocessing of coding genes. Front. Genet. 2014;5:100. https://doi.org/10.3389/fgene.2014.00100
30. Lujambio A., Calin G.A., Villanueva A., Ropero S., Sanchez-Cespedes M., Blanco D., et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. U. S. A. 2008;105(36):13556–13561. https://doi.org/10.1073/pnas.0803055105
31. Hammond S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015;87:3–14. https://doi.org/10.1016/j.addr.2015.05.001
32. Bernstein E., Kim S.Y., Carmell M.A., Murchison E.P., Alcorn H., Li M.Z., et al. Dicer isessential for mouse development. Nat. Genet. 2003;35(3):215–217. https://doi.org/10.1038/ng1253
33. Suh M.R., Lee Y., Kim J.Y., Kim S.K., Moon S.H., Lee J.Y., et al. Human embryonicstem cells express a unique set of microRNAs. Dev. Biol. 2004;270(2):488–498. https://doi.org/10.1016/j.ydbio.2004.02.019
34. Murchison E.P., Partridge J.F., Tam O.H., Cheloufi S., Hannon G.J. Characterization ofDicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 2005;102(34):12135–12140. https://doi.org/10.1073/pnas.0505479102
35. Morrow D.A., de Lemos J.A. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115(8):949– 952. https://doi.org/10.1161/CIRCULATIONAHA.106.683110
36. Hackl M., Heilmeier U., Weilner S., Grillari J. Circulating microRNAs as novel biomarkersfor bone diseases — complex signatures for multifactorial diseases? Mol. Cell. Endocrinol. 2016;432:83–95. https://doi.org/10.1016/j.mce.2015.10.015
37. Mestdagh P., Hartmann N., Baeriswyl L., Andreasen D., Bernard N., Chen C., et al. Evaluation of quantitative miRNA expression platforms in the microRNA qualitycontrol (miRQC) study. Nat. Methods. 2014;11(8):809–815. https://doi.org/10.1038/nmeth.3014
38. Nelson P.T., Wang W.X., Wilfred B.R., Tang G. Technical variables in highthroughputmiRNA expression profiling: much work remains to be done. Biochim. Biophys. Acta. 2008;1779(11):758–765. https://doi.org/10.1016/j.bbagrm.2008.03.012
39. Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K., et al. Characterization ofmicroRNAsinserum: a novel class of biomarkers for diagnosis of cancer and other diseases. CellRes. 2008;18(10):997–1006. https://doi.org/10.1038/cr.2008.282
40. Takahashi K., Yokota S., Tatsumi N., Fukami T., Yokoi T., Nakajima M. Cigarettesmoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol. Appl. Pharmacol. 2013;272(1):154–160. https://doi.org/10.1016/j.taap.2013.05.018
41. Witwer K.W. XenomiRs and miRNA homeostasis in health and disease: evidencethat diet and dietary miRNAs direct ly and indirectly influence circulating miRNAprofiles. RNA Biol. 2012;9(9):1147–1154. https://doi.org/10.4161/rna.21619
42. Shende V.R., Goldrick M.M., Ramani S., Earnest D.J. Expression and rhythmic modulationof circulating microRNAs targeting the clock gene Bmal1 inmice. PLoS One. 2011;6(7):e22586. https://doi.org/10.1371/journal.pone.0022586
43. Neal C.S., Michael M.Z., Pimlott L.K., Yong T.Y., Li J.Y., Gleadle J.M. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol. Dial. Transplant. 2011;26(11):3794–3802. https://doi.org/10.1093/ndt/gfr485
44. Wang J., Chen J., Sen S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol. 2016;231(1):25–30. https://doi.org/10.1002/jcp.25056
45. Ardekani A.M., Naeini M.M. The role of microRNAs in human diseases. Avicenna J. Med. Biotechnol. 2010;2(4):161–179.
46. Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B. L., Mak R. H., Ferrando A. A., Downing J. R., Jacks T., Horvitz H. R., Golub T. R. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–838. https://doi.org/10.1038/nature03702
47. Butz H., Patocs A. Technical aspects related to the analysis of circulating microRNAs. In: Circulating microRNAs in disease diagnostics and their potential biological relevance. Basel: Springer; 2015, p. 51–71. https://doi.org/10.1007/978-3-0348-0955-9_3
48. Lombardi G., Sanchis-Gomar F., Perego S., Sansoni V., Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine. 2016;54(2):284–305. https://doi.org/10.1007/s12020-015-0834-0
49. Russell A.P., Hesselink M.K., Lo S.K., Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J. 2005;19(8):986–988. https://doi.org/10.1096/fj.04-3168fje
50. Banfi G., Colombini A., Lombardi G., Lubkowska A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012;56:1–54. https://doi.org/10.1016/b978-0-12-394317-0.00015-7
51. Güller I., Russell A.P. MicroRNAs in skeletal muscle: their role and regulation in development,disease and function. J. Physiol. 2010;588(Pt 21):4075–4087. https://doi.org/10.1113/jphysiol.2010.194175
52. Ai J., Zhang R., Li Y., Pu J., Lu Y., Jiao J. Circulating microRNA– 1 as a potential novel biomarker for acute myocardial infarction. Biochem. Biophys. Res. Commun. 2010;391(1):73–77. https://doi.org/10.1016/j.bbrc.2009.11.005
53. McCarthy J.J., Esser K.A. MicroRNA–1 and microRNA– 133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol. 2007;102(1):306–313. https://doi.org/10.1152/japplphysiol.00932.2006
54. Wardle S.L, Bailey M.E.S., Kilikevicius A., Malkova D., Wilson R.H., Venckunas T., Moran C.N. Plasma microRNA levels differ between endurance and strength athletes. PLoS One. 2015;10(4):e0122107. https://doi.org/10.1371/journal.pone.0122107
55. Widmann M., Nieß A.M., Munz B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019;49(4):509–523. https://doi.org/10.1007/s40279-019-01070-4
56. Polakovičová M., Musil P., Laczo E., Hamar D., Kyselovič J. Circulating MicroRNAs as Potential Biomarkers of Exercise Response. Int. J. Mol. Sci. 2016;17(10):1553. https://doi.org/10.3390/ijms17101553
57. Silva G.J.J., Bye A., El Azzouzi H., Wisløff U. MicroRNAs as Important Regulators of Exercise Adaptation. Prog. Cardiovasc. Dis. 2017;60(1):130–151. https://doi.org/10.1016/j.pcad.2017.06.003
58. Xu T., Liu Q., Yao J., Dai Y., Wang H., Xiao J. Circulating microRNAs in response to exercise. Scand. J. Med. Sci. Sports. 2015;25(2):149–154. https://doi.org/10.1111/sms.12421
59. Russell A.P., Lamon S. Exercise, skeletal muscle and circulating microRNAs. Prog.Mol. Biol. Transl. Sci. 2015;135:471–496. https://doi.org/10.1016/bs.pmbts.2015.07.018
60. Aoi W., Ichikawa H., Mune K., Tanimura Y., Mizushima K., Naito Y., Yoshikawa T. Muscle enriched microRNA miR– 486 decreases in circulation in response to exercise in young men. Front. Physiol. 2013;4:80. https://doi.org/10.3389/fphys.2013.00080
61. Nielsen S., Akerstrom T., Rinnov A., Yfanti C., Scheele C., Pedersen B.K., Laye M.J. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014;9(2):e87308. https://doi.org/10.1371/journal.pone.0087308
62. Mooren F.C., Viereck J., Kruger K., Thum T. Circulating microRNAs as potential biomarkersof aerobic exercise capacity. Am. J. Physiol. Heart Circ. Physiol. 2014;306(4):H557–H563. https://doi.org/10.1152/ajpheart.00711.2013
63. Baggish A.L., Park J., Min P.K., Isaacs S., Parker B.A., Thompson P.D., et al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J. Appl. Physiol. 2014;116(5):522–531. https://doi.org/10.1152/japplphysiol.01141.2013
64. Radom-Aizik S., Zaldivar Jr F., Leu S.Y., Adams G.R., Oliver S., Cooper D.M. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin. Transl. Sci. 2012;5(1):32–38. https://doi.org/10.1111/j.1752-8062.2011.00384.x
65. Drummond M.J., McCarthy J.J., Fry C.S., Esser K.A., Rasmussen B.B. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am. J. Physiol. Endocrinol. Metab. 2008;295(6):E1333–E1340. https://doi.org/10.1152/ajpendo.90562.2008
66. Xu J., Lombardi G., Jiao W., Banfi G. Effects of exercise on bone status in female subjects, from young girls to postmenopausal women: an overview of systematic reviews and meta–analyses. Sports Med. 2016;46(8):1165–1182. https://doi.org/10.1007/s40279-016-0494-0
67. Qi Z., Liu W., Lu J. The mechanisms underlying the beneficial effects of exercise on bone remodeling: roles of bone–derived cytokines and microRNAs. Prog. Biophys. Mol. Biol. 2016;122(2):131–139. https://doi.org/10.1016/j.pbiomolbio.2016.05.010
68. Gamez B., Rodriguez-Carballo E., Ventura F. MicroRNAs and post-transcriptional regulation of skeletal development. J. Mol. Endocrinol. 2014;52(3):R179–R197. https://doi.org/10.1530/JME-13-0294
69. Lombardi G., Sansoni V., Perego S., Vernillo G., Bonzanni M., Merati G. Bone specific circulating miRNA profile changes over an 8-week repeated sprint training protocol. Endocr. Abstr. 2016;41:GP31. https://doi.org/10.1530/endoabs.41.GP31
70. Chen J., Qiu M., Dou C., Cao Z., Dong S. MicroRNAs in bone balance and osteoporosis. Drug Dev. Res. 2015;76(5):235–245. https://doi.org/10.1002/ddr.21260
71. Seeliger C., Karpinski K., Haug A.T., Vester H., Schmitt A., Bauer J.S., van Griensven M. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J. Bone Miner. Res. 2014;29(8):1718–1728. https://doi.org/10.1002/jbmr.2175
72. Rullman E., Mekjavic I.B., Fischer H., Eiken O. PlanHab (planetary habitat simulation): the combined and separate effects of 21 days bed rest and hypoxic confinement on human skeletal muscle miRNA expression. Physiol. Rep. 2016;4(8):e12753. https://doi.org/10.14814/phy2.12753
73. Bork-Jensen J., Scheele C., Christophersen D.V., Nilsson E., Friedrichsen M., Fernandez-Twinn D.S., et al. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes. Diabetologia. 2015;58(2):363–373. https://doi.org/10.1007/s00125-014-3434-2
74. Alibegovic A.C., Sonne M.P., Hojbjerre L., Bork-Jensen J., Jacobsen S., Nilsson E., et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am. J. Physiol. Endocrinol. Metab. 2010;299(5):E752–E763. https://doi.org/10.1152/ajpendo.00590.2009
75. Gallagher I.J., Scheele C., Keller P., Nielsen A.R., Remenyi J., Fischer C.P., et al. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med. 2010;2(2):9. https://doi.org/10.1186/gm130
76. Wahlquist C., Jeong D., Rojas-Munoz A., Kho C., Lee A., Mitsuyama S., et al. Inhibition of miR–25 improves cardiac contractility in the failing heart. Nature. 2014;508(7497):531–535. https://doi.org/10.1038/nature13073
77. Becker N., Lockwood C.M. Pre-analytical variables in miRNA analysis. Clin. Biochem. 2013;46(10-11):861–868. https://doi.org/10.1016/j.clinbiochem.2013.02.015
78. Lombardi G., Lanteri P., Colombini A., Banfi G. Blood biochemical markers of bone turnover: pre–analytical and technical aspects of sample collection and handling. Clin. Chem. Lab. Med. 2012;50(5):771–789. https://doi.org/10.1515/cclm-2011-0614
79. Mestdagh P., Van Vlierberghe P., DeWeer A., Muth D., Westermann F., Speleman F. Vandesompele J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10(6):R64. https://doi.org/10.1186/gb-2009-10-6-r64
80. Bonini P., Plebani M., Ceriotti F., Rubboli F. Errors in laboratory medicine. Clin. Chem. 2002;48(5):691–698.
81. Lippi G., Guidi G.C., Mattiuzzi C., Plebani M. Preanalytical variability: the darkside of the moon in laboratory testing. Clin. Chem. Lab. Med. 2006;44(4):358–365. https://doi.org/10.1515/CCLM.2006.073
82. Kavsak P.A. What is in that sample? A pertinent question when assessing quality for patient laboratory results and beyond. Clin. Biochem. 2015;48(7-8):465–466. https://doi.org/10.1016/j.clinbiochem.2015.04.010
83. van Dongen-Lases E.C., Cornes M.P., Grankvist K., Ibarz M., Kristensen G.B., Lippi G., et al. Patient identification and tube labelling — a call for harmonization. Clin. Chem. Lab. Med. 2016;54(7):1141–1145. https://doi.org/10.1515/cclm-2015-1089
84. Lippi G., Chance J.J., Church S., Dazzi P., Fontana R., Giavarina D., et al. Preanalytical quality improvement: from dream to reality. Clin. Chem. Lab. Med. 2011;49(7):1113–1126. https://doi.org/10.1515/CCLM.2011.600
85. Supak-Smolcic V., Antoncic D., Ozanic D., Vladilo I., Bilic-Zulle L. Influence of a prolonged fasting and mild activity on routine laboratory tests. Clin. Biochem. 2015;48(1-2):85–88. https://doi.org/10.1016/j.clinbiochem.2014.10.005
86. Banfi G., Dolci A. Preanalytical phase of sport biochemistry and haematology. J. Sports Med. Phys. Fitness. 2003;43(2):223–230.
87. Lima-Oliveira G., Guidi G.C., Salvagno G.L., Brocco G., Danese E., Lippi G. Estimation of the imprecision on clinical chemistry testing due to fist clenchingand maintenance during venipuncture. Clin. Biochem. 2016;49(18):1364–1367. https://doi.org/10.1016/j.clinbiochem.2016.07.007
88. Bahtiyar N., Yoldas A., Abbak Y., Dariyerli N., Toplan S. Erythroid microRNA and oxidant status alterations in l–thyroxine– induced hyperthyroid rats: effects of selenium supplementation. Minerva Endocrinol. (Torino). 2021;46(1):107–115. https://doi.org/10.23736/S2724-6507.20.03154-5
89. Quality Venipuncture Quick Guide Standard by Clinical and Laboratory Standards Institute [Internet]. Available from: https://www.techstreet.com/standards/clsi-h03-a6-quickguide?product_id=1732666#jumps
90. Lima-Oliveira G., Lippi G., Salvagno G.L., Montagnana M., Picheth G., Guidi G.C. The effective reduction of tourniquet application time after minor modification of the CLSI H03–A6 blood collection procedure. Biochem. Med. 2013;23(3):308–315. https://doi.org/10.11613/bm.2013.037
91. WADA, The world anti-doping code: athlete biological passport operating guidelines and compilation of required elements [Internet]. Available from: https://www.wada-ama.org/sites/default/files/resources/files/guidelines_abp_v8_final.pdf
92. Lombardi G., Perego S., Luzi L., Banfi G. A four-season molecule: osteocalcin. Updates in its physiological roles. Endocrine. 2015;48(2):394–404. https://doi.org/10.1007/s12020-014-0401-0
93. Lanteri P., Lombardi G., Colombini A., Banfi G. Vitamin D in exercise: physiologic and analytical concerns. Clin. Chim. Acta. 2013;415:45–53. https://doi.org/10.1016/j.cca.2012.09.004
94. Lombardi G., Banfi G. Effects of sample matrix and storage conditions on fulllengthvisfatin measurement in blood. Clin. Chim. Acta. 2015;440:140–142. https://doi.org/10.1016/j.cca.2014.11.006
95. Lanteri P., Lombardi G., Colombini A., Grasso D., Banfi G. Stability of osteopontin in plasma and serum. Clin. Chem. Lab. Med. 2012;50(11):1979–1984. https://doi.org/10.1515/cclm-2012-0177
96. Segura J., Lundby C. Blood doping: potential of blood and urine sampling to detect autologous transfusion. Br. J. Sports Med. 2014;48(10):837–841. https://doi.org/10.1136/bjsports-2014-093601
97. Lombardi G., Colombini A., Lanteri P., Banfi G. Reticulocytes in sports medicine: an update, Adv. Clin. Chem. 2013;59:125–153. https://doi.org/10.1016/b978-0-12-405211-6.00005-x
98. Banfi G., Lombardi G., Colombini A., Lippi G. Analytical variability in sport hematology:its importance in an antidoping setting. Clin. Chem. Lab. Med. 2011;49(5):779–782. https://doi.org/10.1515/CCLM.2011.125
99. Jarry J., Schadendorf D., Greenwood C., Spatz A., van Kempen L.C. The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol. Oncol. 2014;8(4):819–829. https://doi.org/10.1016/j.molonc.2014.02.009
100. Chen X., Liang H., Zhang J., Zen K., Zhang C.Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22(3):125–132. https://doi.org/10.1016/j.tcb.2011.12.001
101. Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F. Argonaute2 complexes carry a population of circulating microRNAs independentof vesicles in human plasma. Proc. Natl. Acad. Sci. U. S. A. 2011;108(12):5003–5008. https://doi.org/10.1073/pnas.1019055108
102. Li L., Zhu D., Huang L., Zhang J., Bian Z., Chen X., et al. Argonaute 2 complexesselectively protect the circulating microRNAs in cell–secreted microvesicles. PLoSOne. 2012;7(10):e46957. https://doi.org/10.1371/journal.pone.0046957103.
103. El-Hefnawy T., Raja S., Kelly L., Bigbee W.L., Kirkwood J.M., Luketich J.D. Characterization of amplifiable, circulating RNA in plasma and its potential as atool for cancer diagnostics. Clin. Chem. 2004;50(3):564–573. https://doi.org/10.1373/clinchem.2003.028506
104. Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., et al. Circulating microRNAs as stable blood–basedmarkers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 2008;105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105
105. Kroh E.M., Parkin R.K., Mitchell P.S., Tewari M. Analysis of circulating microRNAbiomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298–301. https://doi.org/10.1016/j.ymeth.2010.01.032
106. Cheng H.H., Yi H.S., Kim Y., Kroh E.M., Chien J.W., Eaton K.D., et al. Plasmaprocessing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795. https://doi.org/10.1371/journal.pone.0064795
107. Kirschner M.B., Kao S.C., Edelman J.J., Armstrong N.J., Vallely M.P., van Zandwijk N., Reid G. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6(9):e24145. https://doi.org/10.1371/journal.pone.0024145
108. Willeit P., Zampetaki A., Dudek K., Kaudewitz D., King A., Kirkby N.S., et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ. Res. 2013;112(4):595–600. https://doi.org/10.1161/CIRCRESAHA.111.300539
109. Blondal T., Jensby Nielsen S., Baker A., Andreasen D., Mouritzen P., Wrang Teilum M., Dahlsveen I.K. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–S6. https://doi.org/10.1016/j.ymeth.2012.09.015
110. Livesey J.H., Ellis M.J., Evans M.J. Pre-analytical requirements. Clin. Biochem. Rev. 2008;29(1):S11–S15.
111. Kavsak P.A., Hammett-Stabler C.A. Clinical biochemistry year in review — theclinical “good”, the analytical “bad”, and the “ugly” laboratory practices. Clin. Biochem. 2014;47(18):255–256. https://doi.org/10.1016/j.clinbiochem.2014.11.015
112. Boeckel J.N., Thome C.E., Leistner D., Zeiher A.M., Fichtlscherer S., Dimmeler S. Heparin selectively affects the quantification of microRNAs in human bloodsamples. Clin. Chem. 2013;59(7):1125–1127. https://doi.org/10.1373/clinchem.2012.199505
113. Garcia M.E., Blanco J.L., Caballero J., Gargallo-Viola D. Anticoagulants interferewith PCR used to diagnose invasive aspergillosis. J. Clin. Microbiol. 2002;40(4):1567–1568. https://doi.org/10.1128/JCM.40.4.1567-1568.2002
114. Zampetaki A., Mayr M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb. Haemost. 2012;108(4):592–598. https://doi.org/10.1160/TH12-02-0097
115. Kim D.J., Linnstaedt S., Palma J., Park J.C., Ntrivalas E., Kwak-Kim J.Y., et al. Plasma components affect accuracy of circulating cancer–related microRNA quantitation. J. Mol. Diagn. 2012;14(1):71–80. https://doi.org/10.1016/j.jmoldx.2011.09.002
116. Lombardi G., Perego S., Sansoni V., Banfi G. Circulating miRNA as fine regulators of the physiological responses to physical activity: Pre-analytical warnings for a novel class of biomarkers. Clin. Biochem. 2016;49(18):1331–1339. https://doi.org/10.1016/j.clinbiochem.2016.09.017
117. Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization ofextracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233. https://doi.org/10.1093/nar/gkr254
118. Guimbellot J.S., Erickson S.W., Mehta T., Wen H., Page G.P., Sorscher E.J., Hong J. S. Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome – wide microarray analysis. BMC Med. Genet. 2009;2:15. https://doi.org/10.1186/1755-8794-2-15
119. Chen F., Zhang W., Liang Y., Huang J., Li K., Green C.D., et al. Transcriptome and network changes in climbers at extreme altitudes. PLoS One. 2012;7(2):e31645. https://doi.org/10.1371/journal.pone.0031645
120. Yan Y., Shi Y., Wang C., Guo P., Wang J., Zhang C.Y., Zhang C. Influence of a high altitude hypoxic environment on human plasma microRNA profiles. Sci. Rep. 2015;5:15156. https://doi.org/10.1038/srep15156
Рецензия
Для цитирования:
Постников П.В., Пронина И.В. Преаналитические особенности определения циркулирующих микроРНК как новых специфических биомаркеров реакции организма на физическую нагрузку. Спортивная медицина: наука и практика. 2021;11(4):90-103. https://doi.org/10.47529/2223-2524.2021.4.1
For citation:
Postnikov P.V., Pronina I.V. Preanalytical features of the determination of circulating microRNAs as new specific biomarkers of the body’s response to physical activity. Sports medicine: research and practice. 2021;11(4):90-103. (In Russ.) https://doi.org/10.47529/2223-2524.2021.4.1