Preview

Sports medicine: research and practice

Advanced search

Possibilities of echocardiographic screening in athletes. Part 2. Structural changes of the heart

https://doi.org/10.47529/2223-2524.2023.1.11

Abstract

Objective: to assess the suitability of existing domestic and international recommendations and standards for the use of echocardiography as a screening technique for examining athletes with various diseases.

Materials and methods: a meta‑analysis of 59 domestic and foreign literature sources based on the results of an echocardiographic examination of athletes was carried out. The indicators of 2647 male athletes aged 16 to 45 years old, playing for the national teams of the city of Moscow and having passed an in‑depth medical examination at the Sports Medicine Clinic, were studied.

Results: screening echocardiography sufficiently reveals structural deviations of the heart of athletes from population norms, including congenital or acquired pathologies that cause both sudden death and general morbidity compared with a healthy population.

Conclusion: in order to speed up and reduce the cost of the examination of athletes, it is appropriate to use the primary screening, and if necessary, an in‑depth examination. In this case, it is advisable to distinguish three diagnostic stages that determine the danger or admissibility of playing sports: (A) — the risk of developing complications, (B) — the presence of structural changes in the heart, and (C) — the appearance of clinical symptoms.

About the Authors

A. S. Sharykin
Moscow Scientific and Practical Center for Medical Rehabilitation and Sports Medicine; Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency; Pirogov Russian National Research Medical University
Russian Federation

Alexander S. Sharykin, MD, D.Sc. (Medicine), Professor of the Department of Hospital Pediatrics

1 Ostrovityanova str., Moscow, 117997



V. A. Badtieva
Moscow Scientific and Practical Center for Medical Rehabilitation and Sports Medicine; Sechenov First Moscow State Medical University
Russian Federation

Viktoria A. Badtieva, corresponding member of the RAS, M.D., D.Sc. (Medicine), Professor, Head of Branch No. 1, Restorative and Sports Medicine of the Moscow Department of Healthcare, Head of the Department of Sports Medicine and Clinical Pharmacology; Professor of the Department of Restorative Medicine, Rehabilitation and Balneology

53 Zemlyanoy Val str., Moscow, 105120

62/1 Leninsky ave., Moscow, 119296



Iu. M. Ivanova
Moscow Scientific and Practical Center for Medical Rehabilitation and Sports Medicine
Russian Federation

Iuliia M. Ivanova, M.D., Ph.D. (Medicine), doctor of functional diagnostics, Department of  Functional Diagnostics and Sports Medicine, Branch No. 1, Restorative and Sports Medicine of the Moscow Department of Healthcare, Head of the Department of Sports Medicine and Clinical Pharmacology

53 Zemlyanoy Val str., Moscow, 105120



D. M. Usmanov
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Dmitriy M. Usmanov, doctor of sports medicine, Department of medical support for sports teams and competitions

5 Bolshaya Dorogomilivskaya str., Moscow, 121059



References

1. Maisch B. Exercise and sports in cardiac patients and athletes at risk. Balance between benefit and harm. Herz. 2015;40(3):395–401. https://doi.org/10.1007/s00059-015-4221-7

2. Liu H.W., Huang L.W., Chiu S.N., Lue H.C., Wu M.H., Chen M.R., Wang J.K. Cardiac Screening for High Risk Sudden Cardiac Death in School-Aged Children. Acta Cardiol. Sin. 2020;36(6):641–648. https://doi.org/10.6515/ACS.202011_36(6).20200515A

3. Jortveit J., Klcovansky J., Døhlen G., Eskedal L., Birkeland S., Holmstrøm H. Out-of-hospital sudden cardiac arrest in children with congenital heart defects. Arch. Dis. Child. 2018;103(1):57–60. https://doi.org/10.1136/archdischild-2017-312621

4. McKinney J., Johri A.M., Poirier P., Fournier A., Goodman J.M., Moulson N., et al. Canadian Cardiovascular Society Cardiovascular Screening of Competitive Athletes: The Utility of the Screening Electrocardiogram to Predict Sudden Cardiac Death. Can. J. Cardiol. 2019;35(11):1557–1566. https://doi.org/10.1016/j.cjca.2019.08.023.

5. Weiner R.B., Wang F., Hutter A.M. Jr, Wood M.J., Berkstresser B., McClanahan C., et al. The feasibility, diagnostic yield, and learning curve of portable echocardiography for out-of-hospital cardiovascular disease screening. J. Am. Soc. Echocardiogr. 2012;25(5):568–575. https://doi.org/10.1016/j.echo.2012.01.010

6. Baggish A.L., Wood M.J. Athlete’s heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 2011;123(23):2723–2735. https://doi.org/10.1161/CIRCULATIONAHA.110.981571

7. Galderisi M., Cardim N., D’Andrea A., Bruder O., Cosyns B., Davin L., et al. The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015;16(4):353. https://doi.org/10.1093/ehjci/jeu323

8. Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P., et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force forthe Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014;35(39):2733–2779. https://doi.org/10.1093/eurheartj/ehu284

9. Shah M. Hypertrophic cardiomyopathy. Cardiol. Young. 2017;27(S1):S25–S30. https://doi.org/10.1017/S1047951116002195

10. Elliott P., Andersson B., Arbustini E., Bilinska Z., Cecchi F., Charron P., et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008;29(2):270–276. https://doi.org/10.1093/eurheartj/ehm342

11. Semsarian C., Ingles J., Maron M.S., Maron B.J. New perspectives on the prevalence of hypertrophiccardiomyopathy. J. Am. Coll. Cardiol. 2015 31;65(12):1249–1254. https://doi.org/10.1016/j.jacc.2015.01.019

12. Sharma S., Maron B.J., Whyte G., Firoozi S., Elliott P.M., McKenna W.J. Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2002;40(8):1431–1436. https://doi.org/10.1016/s0735-1097(02)02270-2

13. Lander B.S., Phelan D.M., Martinez M.W., Dineen E.H. Hypertrophic Cardiomyopathy: Updates Through the Lens of Sports Cardiology. Curr. Treat. Options Cardiovasc. Med. 2021;23(8):53. https://doi.org/10.1007/s11936-021-00934-1

14. Reichart D., Magnussen C., Zeller T., Blankenberg S. Dilated cardiomyopathy: from epidemiologic to genetic phenotypes: A translational review of current literature. J. Intern. Med. 2019;286(4):362–372. https://doi.org/10.1111/joim.12944

15. Millar L.M., Fanton Z., Finocchiaro G., Sanchez-Fernandez G., Dhutia H., Malhotra A., et al. Differentiation between athlete’s heart and dilated cardiomyopathy in athletic individuals. Heart. 2020;106(14):1059–1065. https://doi.org/10.1136/heartjnl-2019-316147

16. Saberi S., Day S.M. Exercise Prescription for the Athlete with Cardiomyopathy. Cardiol. Clin. 2016;34(4):591–601. https://doi.org/10.1016/j.ccl.2016.06.008

17. Zorzi A., Cipriani A., Mattesi G., Vio R., Bettella N., Corrado D. Arrhythmogenic Cardiomyopathy and Sports Activity. J. Cardiovasc. Transl. Res. 2020;13(3):274–283. https://doi.org/10.1007/s12265-020-09995-2

18. Gasperetti A., Dello Russo A., Busana M., Dessanai M., Pizzamiglio F., Saguner A.M., et al. Novel risk calculator performance in athletes with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2020;17(8):1251–1259. https://doi.org/10.1016/j.hrthm.2020.03.007

19. Marcus F.I., McKenna W.J., Sherrill D., Basso C., Bauce B., Bluemke D.A., et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur. Heart J. 2010;31(7):806–814. https://doi.org/10.1093/eurheartj/ehq025

20. Nugent A.W., Daubeney P.E., Chondros P., Carlin J.B., Colan S.D., Cheung M., et al. National Australian Childhood Cardiomyopathy Study. Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation. 2005;112(9):1332–1338. https://doi.org/10.1161/CIRCULATIONAHA.104.530303

21. Ross S.B., Jones K., Blanch B., Puranik R., McGeechan K., Barratt A., Semsarian C. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. Eur. Heart J. 2020;41(14):1428–1436. https://doi.org/10.1093/eurheartj/ehz317

22. Femia G., Semsarian C., Ross S.B., Celermajer D., Puranik R. Left Ventricular Non-Compaction: Review of the Current Diagnostic Challenges and Consequences in Athletes. Medicina (Kaunas). 2020;56(12):697. https://doi.org/10.3390/medicina56120697

23. Rawish E., Stiermaier T., Santoro F., Brunetti N.D., Eitel I. Current Knowledge and Future Challenges in Takotsubo Syndrome: Part 1-Pathophysiology and Diagnosis. J. Clin. Med. 2021;10(3):479. https://doi.org/10.3390/jcm10030479

24. Y-Hassan S., Tornvall P. Epidemiology, pathogenesis, and management of takotsubo syndrome. Clin. Auton. Res. 2018;28(1):53–65. https://doi.org/10.1007/s10286-017-0465-z

25. Citro R., Lyon A.R., Meimoun P., Omerovic E., Redfors B., Buck T., et al. Standard and advanced echocardiography in takotsubo (stress) cardiomyopathy: clinical and prognostic implications. J. Am. Soc. Echocardiogr. 2015;28(1):57–74. https://doi.org/10.1016/j.echo.2014.08.020

26. Eichhorn C., Bière L., Schnell F., Schmied C., Wilhelm M., Kwong R.Y., Gräni C. Myocarditis in Athletes Is a Challenge: Diagnosis, Risk Stratification, and Uncertainties. JACC Cardiovasc. Imaging. 2020;13(2 Pt 1):494–507. https://doi.org/10.1016/j.jcmg.2019.01.039

27. Caforio A.L., Pankuweit S., Arbustini E., Basso C., Gimeno-Blanes J., Felix S.B., et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013;34(33):2636–2648, 2648a–2648d. https://doi.org/10.1093/eurheartj/eht210

28. Pilgrim J.L., Woodford N., Drummer O.H. Cocaine in sudden and unexpected death: a review of 49 post-mortem cases. Forensic Sci. Int. 2013;227(1-3):52–9. https://doi.org/10.1016/j.forsciint.2012.08.037

29. Maron B.J., Haas T.S., Ahluwalia A., Murphy C.J., Garberich R.F. Demographics and Epidemiology of Sudden Deaths in Young Competitive Athletes: From the United States National Registry. Am. J. Med. 2016;129(11):1170–1177. https://doi.org/10.1016/j.amjmed.2016.02.031

30. Sheppard M.N. Aetiology of sudden cardiac death in sport: a histopathologist’s perspective. Br. J. Sports Med. 2012;46 Suppl 1(Suppl_1):i15–21. https://doi.org/10.1136/bjsports-2012-091415

31. Eckart R.E., Shry E.A., Burke A.P., et al. Department of Defense Cardiovascular Death Registry Group. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J. Am. Coll Cardiol. 2011;58(12):1254–1261. https://doi.org/10.1016/j.jacc.2011.01.049

32. Merghani A., Maestrini V., Rosmini S., Cox A.T., Dhutia H., Bastiaenan R., et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation. 2017;136(2):126–137. https://doi.org/10.1161/CIRCULATIONAHA.116.026964

33. Basso C., Maron B.J., Corrado D., Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J. Am. Coll. Cardiol. 2000;35(6):1493–1501. https://doi.org/10.1016/s0735-1097(00)00566-0

34. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115(10):1296–1305. https://doi.org/10.1161/CIRCULATIONAHA.106.618082

35. Harmon K.G., Asif I.M., Maleszewski J.J., Owens D.S., Prutkin J.M., Salerno J.C., et al. Incidence and Etiology of Sudden Cardiac Arrest and Death in High School Athletes in the United States. Mayo Clin. Proc. 2016;91(11):1493–1502. https://doi.org/10.1016/j.mayocp.2016.07.021

36. Gräni C., Benz D.C., Steffen D.A., Giannopoulos A.A., Messerli M., Pazhenkottil A.P., et al. Sports Behavior in Middle-Aged Individuals with Anomalous Coronary Artery from the Opposite Sinus of Valsalva. Cardiology. 2018;139(4):222–230. https://doi.org/10.1159/000486707

37. Sharykin A.S., Karelina E.V., Konstantinova N.K., Badtieva V.A. Isolated hypoplasia of the right coronary artery in a young athlete: a description of a clinical case and a brief review of the literature. Pediatria n.a. G.N. Speransky. 2021;100(5):175–180 (In Russ.). https://doi.org/10.24110/0031-403X-2021-100-5-175-180

38. Sharykin A.S. Sharykin A.S. Whether congenital heart diseases and sport are compatible? Consilium Medicum. Pediatrics (App.). 2015;4:18–21 (in Russ.).

39. Sharykin A.S., Subbotin P.A., Pavlov V.I., Badtieva V.A., Trunina I.I., Popova N.E., Shilykovskaya E.V. Echocardiographic screening in children and teenagers to be admitted to sports activities. Rossiiskii vestnik perinatologii i pediatrii = Russian Bulletin of perinatology and pediatrics. 2016;(1):71–79 (In Russ.). https://doi.org/10.21508/1027-4065-2016-61-1-71-79

40. Budts W., Pieles G.E., Roos-Hesselink J.W., Garza M.S., D’Ascenzi F., Giannakoulas G., et al. Recommendations for participation in competitive sport in adolescent and adult athletes with Congenital Heart Disease (CHD): position statement of the Sports Cardiology & Exercise Section of the European Association of Preventive Cardiology (EAPC), the European Society of Cardiology (ESC) Working Group on Adult Congenital Heart Disease and the Sports Cardiology, Physical Activity and Prevention Working Group of the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart. J. 2020;41(43):4191–4199. https://doi.org/10.1093/eurheartj/ehaa501

41. Vehmeijer J.T., Koyak Z., Leerink J.M., Zwinderman A.H., Harris L., Peinado R., et al. Identification of patients at risk of sudden cardiac death in congenital heart disease: The PRospEctiVE study on implaNTable cardIOverter defibrillator therapy and suddeN cardiac death in Adults with Congenital Heart Disease (PREVENTION-ACHD). Heart Rhythm. 2021;18(5):785–792. https://doi.org/10.1016/j.hrthm.2021.01.009

42. Siddiqi H., Isselbacher E., Suzuki T., Montgomery D., Pape L., Fattori R., et al. Is size a good predictor of dissection risk in patients with Marfan syndrome or bicuspid aortic valves? Insights from the international registry of acute aortic dissection (IRAD). J. Am. Coll. Cardiol. 2012;59(13_Supplement):E1883. https://doi.org/10.1016/S0735-1097(12)61884-1

43. Harris K.M., Tung M., Haas T.S., Maron B.J. Under-recognition of aortic and aortic valve disease and the risk for sudden death in competitive athletes. J. Am. Coll. Cardiol. 201565(8):860–862. https://doi.org/10.1016/j.jacc.2014.09.094

44. Sharykin A.S., Trunina I.I., Karelina E.V., Dmitriev I.I., Yakunina E.A. Pathology of the aortic valve in children of school age and possibilities of stress echocardiography. Pediatria. 2018;97(3):42–51 (In Russ.). https://doi.org/10.24110/0031-403X-2018-97-3-42-51

45. Gati S., Malhotra A., Sedgwick C., Papamichael N., Dhutia H., Sharma R., et al. Prevalence and progression of aortic root dilatation in highly trained young athletes. Heart. 2019;105(12):920–925. https://doi.org/10.1136/heartjnl-2018-314288

46. Levine R.A., Triulzi M.O., Harrigan P., Weyman A.E. The relationship of mitral annular shape to the diagnosis of mitral valve prolapsed. Circulation. 1987;75(4):756–767. https://doi.org/10.1161/01.cir.75.4.756

47. Freed L.A., Benjamin E.J., Levy D., Larson M.G., Evans J.C., Fuller D.L., et al. Mitral valve prolapse in the general population. The benign nature of echocardiographic features in the Framingham Heart Study. J. Am. Coll. Cardiol. 2002;40(7):1298–1304. https://doi.org/10.1016/s0735-1097(02)02161-7

48. Han Y., Peters D.C., Salton C.J., Bzymek D., Nezafat R., Goddu B., et al. Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC Cardiovasc. Imaging. 2008;1(3):294–303. https://doi.org/10.1016/j.jcmg.2008.01.013

49. Nalliah C.J., Mahajan R., Elliott A.D., Haqqani H., Lau D.H., Vohra J.K., et al. Mitral valve prolapse and sudden cardiac death: a systematic review and meta-analysis. Heart. 2019;105(2):144–151. https://doi.org/10.1136/heartjnl-2017-312932

50. Sharykin A.S., Trunina I.I. Mitral valve prolapse. Modern principles of diagnostics and observation tactics. Moscow, Ryazan: Ryazan Regional Printing House; 2020 (In Russ.).

51. De Paepe A., Devereux R.B., Dietz H.C., Hennekam R.C., Pyeritz R.E. Revised diagnostic criteria for the Marfan syndrome. Am. J. Med. Genet. 1996;62(4):417–426. https://doi.org/10.1002/(SICI)1096-8628(19960424)62:4<417::AIDAJMG15>3.0.CO;2-R

52. van Karnebeek C.D., Naeff M.S., Mulder B.J., Hennekam R.C., Offringa M. Natural history of cardiovascular manifestations in Marfan syndrome. Arch. Dis. Child. 2001;84(2):129–137. https://doi.org/10.1136/adc.84.2.129

53. Maron B.J., Maron M.S. Contemporary strategies for risk stratification and prevention of sudden death with the implantable defibrillator in hypertrophic cardiomyopathy. Heart Rhythm. 2016;13(5):1155–1165. https://doi.org/10.1016/j.hrthm.2015.12.048

54. King G., Foley J.B., Royse C.F., Yastrebov K., Hussey M., Boyle G., et al. Myocardial stiffness and the timing difference between tissue Doppler imaging Ea and peak mitral valve opening can distinguish physiological hypertrophy in athletes from hypertrophic cardiomyopathy. Eur. J. Echocardiography. 2006;7(6):423–429. https://doi.org/10.1016/j.euje.2005.09.008

55. Afonso L., Kondur A., Simegn M., Niraj A., Hari P., Kaur R., et al. Two-dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analysis. BMJ Open. 2012;2(4):e001390. https://doi.org/10.1136/bmjopen-2012-001390

56. Karaca Özer P., Ayduk Gövdeli E., Engin B., Atıcı A., Baykız D., Orta H., et al. Role of global longitudinal strain in discriminating variant forms of left ventricular hypertrophy and predicting mortality. Anatol. J. Cardiol. 2021;25(12):863–871. https://doi.org/10.5152/AnatolJCardiol.2021.21940

57. Chan R.H., Maron B.J., Olivotto I., Pencina M.J., Assenza G.E., Haas T., et al. Prognostic value of quantitative contrastenhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130(6):484–495. https://doi.org/10.1161/CIRCULATIONAHA.113.007094. PMID: 25092278

58. Masso A.H., Uribe C., Willerson J.T., Cheong B.Y., Davis B.R. Left Ventricular Noncompaction Detected by Cardiac Magnetic Resonance Screening: A Reexamination of Diagnostic Criteria. Tex. Heart Inst. J. 2020;47(3):183–193. https://doi.org/10.14503/THIJ-19-7157

59. Konda T., Tani T., Suganuma N., Fujii Y., Ota M., Kitai T., et al. Mitral annular disjunction in patients with primary severe mitral regurgitation and mitral valve prolapse. Echocardiography. 2020;37(11):1716–1722. https://doi.org/10.1111/echo.14896


Review

For citations:


Sharykin A.S., Badtieva V.A., Ivanova I.M., Usmanov D.M. Possibilities of echocardiographic screening in athletes. Part 2. Structural changes of the heart. Sports medicine: research and practice. 2023;13(1):5-20. (In Russ.) https://doi.org/10.47529/2223-2524.2023.1.11

Views: 728


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)