Preview

Sports medicine: research and practice

Advanced search

Indicators of endocrine function of muscle and fat tissue in athletes participating in martial arts

https://doi.org/10.47529/2223-2524.2023.4.10

Abstract

Purpose of the study: the aim of that study was an investigation of the level of adipokines, myokines and growth factors in the blood of athletes involved in acyclic sports — martial arts.

Materials and methods: we have investigated 15 male athletes aged 15–19 years. The control group included 15 healthy men of the same age who did not engage in sports. In the blood serum of the all subjects, leptin, adiponectin, resistin, apelin, irisin, adipsin, myostatin, FGF21, osteocrin and oncostatin were determined using a multiplex analysis.

Results: studies have shown that long-term regular martial arts training is accompanied by a decrease in the level of leptin, resistin and oncostatin M in the blood of athletes and a change in correlations between the content of the studied myokines, adipokines and growth factors compared with their values in the control group.

Conclusions: regular long-term martial arts training is accompanied by a decrease in the level of leptin, resistin and oncostatin M in the blood of athletes. Their occurrence is associated with changes in the state of regulatory systems that control the production and secretion of myokines, adipokines and growth factors in adipose, muscle, nervous and bone tissue. The resulting shifts ensure adaptation of the athletes’ bodies to physical activity.

About the Authors

A. V. Shestopalov
Pirogov Russian National Research Medical University; National Medical Research Center of Endocrinology, Ministry of Public Health of Russia
Russian Federation

Alexander V. Shestopalov, M.D., D.Sc. (Medicine), Professor, Holder of the Department of biochemistry and molecular biology; Holder of the Laboratory of Biochemistry of Signal Pathways

117997, Moscow, Ostrovityanova str., 1;

117292, Moscow, str. Dmitry Ulyanov, 11



V. V. Davydov
Pirogov Russian National Research Medical University; National Medical Research Center of Endocrinology, Ministry of Public Health of Russia
Russian Federation

Vadim V. Davydov, M.D., D.Sc. (Medicine), Professor, Professor of the Department of biochemistry and molecular biology; Leading Researcher of the Laboratory of Biochemistry of Signal Pathways,

117997, Moscow, Ostrovityanova str., 1;

117292, Moscow, str. Dmitry Ulyanov, 11



K. P. Merkel
Pirogov Russian National Research Medical University; National Medical Research Center of Endocrinology, Ministry of Public Health of Russia
Russian Federation

Konstantin P. Merkel, Assistant of the Department of biochemistry and molecular biology; Researcher of the Laboratory of Biochemistry of Signal Pathways

117997, Moscow, Ostrovityanova st., 1;

117292, Moscow, str. Dmitry Ulyanov, 11



T. V. Grigoryeva
National Medical Research Center of Endocrinology, Ministry of Public Health of Russia; Kazan (Privolzhsky) Federal University
Russian Federation

Tatiana V. Grigoryeva, Ph.D. (Biology), Leading Researcher, Laboratory of Biochemistry of Signal Pathways; Leading Researcher of the Research Laboratory “Genetics of Microorganisms”, Institute of Fundamental Medicine and Biology

117292, Moscow, str. Dmitry Ulyanov, 11;

420021, Kazan, str. Paris Commune, 18



D. S. Martykanova
Povolzhskiy State University of Physical Culture, Sports and Tourism
Russian Federation

Dilyara S. Martykanova, Ph.D. (Biology), Assistant Professor, Associate Professor of the Department of Adaptive Physical Culture and Life Safety, Senior Researcher at the Research Institute of Physical Culture and Sports

420010, Kazan, str. Universiade Village, 35



N. Сh. Davletova
Povolzhskiy State University of Physical Culture, Sports and Tourism; Kazan State Medical University
Russian Federation

Nailya Сh. Davletova, M.D., Ph.D. (Medicine), Assistant Professor, Associate Professor of the Department of Medical and Biological Disciplines; Associate Professor of the Department of General Hygiene

420010, Kazan, str. Universiade Village, 35;

420012, Kazan, str. Butlerova, 49



A. V. Laikov
Kazan (Privolzhsky) Federal University
Russian Federation

Alexander V. Laikov, Ph.D. (Biology), senior researcher of the Laboratory “Multiomix Technologies of Living Systems”, Institute of Fundamental Medicine and Biology

420021, Kazan, str. Paris Commune, 18

 



S. A. Roumiantsev
Pirogov Russian National Research Medical University; National Medical Research Center of Endocrinology, Ministry of Public Health of Russia
Russian Federation

Sergey A. Roumiantsev, M.D., D.Sc. (Medicine), Professor, Corresponding member of the Russian Academy of Sciences; Holder of the Department of oncology, haematology and radiation therapy; Deputy Director

117997, Moscow, Ostrovityanova str., 1;

117292, Moscow, str. Dmitry Ulyanov, 11



References

1. Vasyukova O.V., Kasyanova Yu.V., Okorokov P.L., Bezlepkina O.B. Myokines and adipomyokines: inflammatory mediators or unique molecules of targeted therapy for obesity? Problems of Endocrinology. 2021;67(4):36–45. (In Russ.). https://doi.org/10.14341/probl12779

2. Orlov S.N., Kapilevich L.V., Dyakova E.Yu., Zakharova A.N., Kabachkova A.V., Kalinnikova Yu.G., et al. Skeletal muscles as an endocrine organ. Tomsk: Publishing House of Tomsk State University; 2018. (In Russ.).

3. Liu S., Cui F., Ning K., Wang Z., Fu P., Wang D., Xu H. Role of irisin in physiology and pathology. Front. Endocrinol. (Lausanne). 2022;13:962968. https://doi.org/10.3389/fendo.2022.962968

4. Shen S., Liao Q., Chen X., Peng C., Lin L. The role of irisin in metabolic flexibility: Beyond adipose tissue browning. Drug Discov. Today. 2022;27(8):2261–2267. https://doi.org/10.1016/j.drudis.2022.03.019

5. Pereira S., Cline D.L., Glavas M.M., Covey S.D., Kieffer T.J. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr. Rev. 2021;42(1):12–28. https://doi.org/10.1210/endrev/bnaa027

6. Komori T., Morikawa Y. Essential roles of the cytokine oncostatin M in crosstalk between muscle fibers and immune cells in skeletal muscle after aerobic exercise. J. Biol. Chem. 2022;298(12):102686. https://doi.org/10.1016/j.jbc.2022.102686

7. Rava A., Pihlak A., Kums T., Purge P., Pääsuke M., Jürimäe J. Resistin concentration is inversely associated with objectively measured physical activity in healthy older women. Aging Clin. Exp. Res. 2020;32(3):475–481. https://doi.org/10.1007/s40520-019-01222-6

8. Ishigaki T., Koyama K., Tsujita J., Tanaka N., Hori S., Oku Y. Plasma leptin levels of elite endurance runners after heavy endurance training. J. Physiol. Anthropol. Appl. Human Sci. 2005;24(6):573–578. https://doi.org/10.2114/jpa.24.573

9. de Assis G.G., Murawska-Ciałowicz E. Exercise and Weight Management: The Role of Leptin — A Systematic Review and Update of Clinical Data from 2000–2022. J. Clin. Med. 2023;12(12):4490. https://doi.org/10.3390/jcm12134490

10. Sierra A.P.R., Martínez Galán B.S., de Sousa C.A.Z., de Menezes D.C., Branquinho J.L.O., Neves R.L., et al. Exercise Induced-Cytokines Response in Marathon Runners: Role of ACE I/D and BDKRB2 +9/-9 Polymorphisms. Front. Physiol. 2022;13:919544. https://doi.org/10.3389/fphys.2022.919544

11. Zholinsky A.V., Grishina Z.V., Kadykova A.I., Makarova G.A., Deev R.V. Approaches to the classification of sports disciplines, taking into account their influence on the biochemical profile of an athlete. Sports medicine: research and practice. 2022;12(2):82–95. (In Russ.). https://doi.org/10.47529/2223-2524.2022.2.7

12. Chaplygina E.V., Kuchieva M.B., Elizarova E.S., Porutchikova Yu.A. Application of impedance measurements in clinical practice. Basic research. 2014;4(1):190–193. (In Russ.).

13. Rylova N.V. Actual aspects of studying athlete’s body composition. Kazan medical journal. 2014;95(1):108–111. (In Russ.). https://doi.org/10.17816/KMJ1468

14. Salukhov V.V., Lopatin Ya.R., Minakov A.A. Adipsin — summing up large-scale results: A review. Consilium Medicum. 2022;24(5):317–323. (In Russ.). https://doi.org/10.26442/20751753.2022.5.201280

15. Shvarts V. Adipose tissue as an endocrine organ. Problems of Endocrinology. 2009;55(1):38–43. (In Russ.). https://doi.org/10.14341/probl200955138-43

16. Eyries M., Siegfried G., Ciumas M., Montagne K., Agrapart M., Lebrin F., Soubrier F. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ. Res. 2008;103(4):432–440. https://doi.org/10.1161/CIRCRESAHA.108.179333

17. Luo M., Luo S., Xue Y., Chang Q., Yang H., Dong W., Zhang T., Cao S. Aerobic exercise inhibits renal EMT by promoting irisin expression in SHR. iScience. 2023;26(2):105990. https://doi.org/10.1016/j.isci.2023.105990

18. Grasso P. Harnessing the Power of Leptin: The Biochemical Link Connecting Obesity, Diabetes, and Cognitive Decline. Front. Aging Neurosci. 2022;4:861350. https://doi.org/10.3389/fnagi.2022.861350

19. Martelli D., Brooks V.L. Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis. Int. J. Mol. Sci. 2023;24(3):2684. https://doi.org/10.3390/ijms24032684

20. Bouassida A., Chamari K., Zaouali M., Feki Y., Zbidi A., Tabka Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br. J. Sports Med. 2010;44(9):620–630. https://doi.org/10.1136/bjsm.2008.046151

21. Sandoval D.A., Davis S.N. Leptin: metabolic control and regulation. J Diabetes Complications. 2003;17(2):108–113. https://doi.org/10.1016/s1056-8727(02)00167-8

22. Haluzik M., Haluziková D., Boudová L., Nedvídková J., Baracková M., Brandejsky P., Novotny V., Vilikus Z. The relationship of serum leptin levels and parameters of endurance training status in top sportsmen. Endocr. Res. 1999;25(3-4):357–369. https://doi.org/10.1080/07435809909066153

23. Roubos E.W., Dahmen M., Kozicz T., Xu L. Leptin and the hypothalamo-pituitary-adrenal stress axis. Gen. Comp. Endocrinol. 2012;177(1):28–36. https://doi.org/10.1016/j.ygcen.2012.01.009

24. Belik E.V., Gruzdeva O.V., Palicheva E.I. Insulin and leptin: disputable and unsolved questions of their interaction. Ateroscleroz. 2019;15(1):49–57. (In Russ.). https://doi.org/10.15372/ATER20190107

25. Parkkila K., Kiviniemi A., Tulppo M., Perkiömäki J., Kesäniemi Y.A., Ukkola O. Resistin is a risk factor for all-cause mortality in elderly Finnish population: A prospective study in the OPERA cohort. PLoS One. 2021;16(3):e0248015. https://doi.org/10.1371/journal.pone.0248015

26. Verbovoy A.F., Tsanava I.A., Verbovaya N.I., Rudolf G.A. Resistin — a marker of cardiovascular diseases. Obesity and Metabolism. 2017;14(4):5–9. (In Russ.). https://doi.org/10.14341/omet201745-9

27. Humińska-Lisowska K., Mieszkowski J., Kochanowicz A., Bojarczuk A., Niespodziński B., Brzezińska P., et al. Implications of Adipose Tissue Content for Changes in Serum Levels of Exercise-Induced Adipokines: A Quasi-Experimental Study. Int. J. Environ. Res. Public Health. 2022;19(14):8782. https://doi.org/10.3390/ijerph19148782

28. Cobbold C. Type 2 diabetes mellitus risk and exercise: is resistin involved? J. Sports Med. Phys. Fitness. 2019;59(2):290–297. https://doi.org/10.23736/S0022-4707.18.08258-0

29. Marcelino-Rodríguez I., Almeida Gonzalez D., Alemán-Sánchez J.J., Brito Díaz B., Rodríguez Pérez M.D.C., Gannar F., et al. Inverse association of resistin with physical activity in the general population. PLoS One. 2017;12(8):e0182493. https://doi.org/10.1371/journal.pone.0182493

30. Stawski L., Trojanowska M. Oncostatin M and its role in fibrosis. Connect Tissue Res. 2019;60(1):40–49. https://doi.org/10.1080/03008207.2018.1500558

31. van Krieken P.P., Roos J., Fischer-Posovszky P., Wueest S., Konrad D. Oncostatin M promotes lipolysis in white adipocytes. Adipocyte. 2022;11(1):315–324. https://doi.org/10.1080/21623945.2022.2075129

32. Kubin T., Gajawada P., Bramlage P., Hein S., Berge B., Cetinkaya A., et al. The Role of Oncostatin M and Its Receptor Complexes in Cardiomyocyte Protection, Regeneration, and Failure. Int. J. Mol. Sci. 2022;23(3):1811. https://doi.org/10.3390/ijms23031811

33. Sanchez-Infantes D., Stephens J.M. Adipocyte Oncostatin Receptor Regulates Adipose Tissue Homeostasis and Inflammation. Front. Immunol. 2021;11:612013. https://doi.org/10.3389/fimmu.2020.612013

34. Miki Y., Morioka T., Shioi A., Fujimoto K., Sakura T., Uedono H., et al. Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation. Biochem. Biophys. Res. Commun. 2019;516(3):951–956. https://doi.org/10.1016/j.bbrc.2019.06.143

35. Houben E., Hellings N., Broux B. Oncostatin M, an Underestimated Player in the Central Nervous System. Front. Immunol. 2019;10:1165. https://doi.org/10.3389/fimmu.2019.01165

36. Jengelley D.H.A., Wang M., Narasimhan A., Rupert J.E., Young A.R., Zhong X., et al. Exogenous Oncostatin M induces Cardiac Dysfunction, Musculoskeletal Atrophy, and Fibrosis. Cytokine. 2022;159:155972. https://doi.org/10.1016/j.cyto.2022.155972


Supplementary files

Review

For citations:


Shestopalov A.V., Davydov V.V., Merkel K.P., Grigoryeva T.V., Martykanova D.S., Davletova N.С., Laikov A.V., Roumiantsev S.A. Indicators of endocrine function of muscle and fat tissue in athletes participating in martial arts. Sports medicine: research and practice. 2023;13(4):65-75. (In Russ.) https://doi.org/10.47529/2223-2524.2023.4.10

Views: 429


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)