Preview

Sports medicine: research and practice

Advanced search

Features of the intestinal microbiome in athletes engaged in martial arts

https://doi.org/10.47529/2223-2524.2024.1.3

Abstract

The purpose of the study: the study of the characteristics of the intestinal microbiome in young men who are professionally engaged in sports.
Materials and methods: the study involved 36 young men aged 18 to 26 years. Fecal samples were taken from the study participants and then bacterial DNA was isolated from the obtained samples.
Results: comparing the intestinal microbe of athletes with the control group, it is possible to trace the positive effect of sports on the overall diversity of representatives of the intestinal microbiota. When analyzing the taxonomic composition, it is worth separately noting the increase in representatives of lactate-producing bacteria and the increased content of Akkermansia muciniphila in athletes.
Conclusions: the results of the study indicate the effects of sports training on the human gut microbiota and suggest the presence of a close two-way relationship “microbiome — muscle tissue”.

About the Authors

A. V. Shestopalov
National Medical Research Center for Endocrinology; N.I. Pirogov Russian National Research Medical University; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Russian Federation

Alexander V. Shestopalov, M.D., D.Sc. (Medicine), Professor, Holder of the Department of biochemistry and molecular biology; Holder of the Laboratory of Biochemistry of Signal Pathways

117997, Moscow, Ostrovityanova str., 

117292, Moscow, str. Dmitry Ulyanov, 11



R. F. Fatkhullin
National Medical Research Center for Endocrinology; N.I. Pirogov Russian National Research Medical University
Russian Federation

Rail F. Fatkhullin, Assistant of the Department of biochemistry and molecular biology; Researcher of the Laboratory of Biochemistry of Signal Pathways

117997, Moscow, Ostrovityanova st., 1

117292, Moscow, str. Dmitry Ulyanov, 11



T. V. Grigorieva
N.I. Pirogov Russian National Research Medical University; Kazan (Volga Region) Federal University
Russian Federation

Tatiana V. Grigoryeva, Ph.D. (Biology), Leading Researcher, Laboratory of Biochemistry of Signal Pathways; Leading Researcher of the Research Laboratory “Genetics of Microorganisms”, Institute of Fundamental Medicine and Biology

117292, Moscow, str. Dmitry Ulyanov, 11

420021, Kazan, str. Paris Commune, 18



D. S. Martykanova
Volga Region State University of Physical Culture, Sports and Tourism
Russian Federation

Dilyara S. Martykanova, Ph.D. (Biology), Assistant Professor, Associate Professor of the Department of Adaptive Physical Culture and Life Safety, Senior Researcher at the Research Institute of Physical Culture and Sports

420010, Kazan, str. Universiade Village, 35



N. H. Davletova
Volga Region State University of Physical Culture, Sports and Tourism
Russian Federation

Nailya Сh. Davletova, M.D., Ph.D. (Medicine), Assistant Professor, Associate Professor of the Department of Medical and Biological Disciplines; Associate Professor of the Department of General Hygiene of the Kazan State Medical University

420010, Kazan, str. Universiade Village, 35

420012, Kazan, str. Butlerova, 49



I. M. Kolesnikova
National Medical Research Center for Endocrinology; N.I. Pirogov Russian National Research Medical University
Russian Federation

Irina M. Kolesnikova, Ph.D. (Biology), Lecturer at the Department of Biochemistry and Molecular Biology of the Institute of Pharmacy and Medical Chemistry; researcher at the Laboratory of Biochemistry of Signaling Pathways

117997, Moscow, Ostrovityanova str., 1

117292, Moscow, str. Dmitry Ulyanov, 11



A. A. Ivanova
National Medical Research Center for Endocrinology; N.I. Pirogov Russian National Research Medical University
Russian Federation

Anna A. Ivanova, M.D., D.Sc. (Medicine), Professor, Associate Professor, Department of Oncology, Hematology and Radiation Therapy; Researcher, Laboratory of Biochemistry of Signaling Pathways

117997, Moscow, st. Ostrovityanova, 1

117292, Moscow, str. Dmitry Ulyanov, 11



S. A. Roumiantsev
National Medical Research Center for Endocrinology; N.I. Pirogov Russian National Research Medical University
Russian Federation

Sergey A. Roumiantsev, M.D., D.Sc. (Medicine), Professor, Corresponding member of the Russian Academy of Sciences; Holder of the Department of oncology, haematology and radiation therapy; Deputy Director

117997, Moscow, Ostrovityanova str., 1

117292, Moscow, str. Dmitry Ulyanov, 11



References

1. Hughes R.L., Holscher H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021;12(6):2190–2215. https://doi.org/10.1093/advances/nmab077

2. Gizard F., Fernandez A., De Vadder F. Interactions between gut microbiota and skeletal muscle. Nutr. Metab. Insights. 2020;13:1178638820980490. https://doi.org/10.1177/1178638820980490

3. Donati Zeppa S., Agostini D., Gervasi M., Annibalini G., Amatori S., Ferrini F., et al. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients. 2019;12(1):17. https://doi.org/10.3390/nu12010017

4. Castellanos N., Diez G.G., Antúnez-Almagro C., Bailén M., Bressa C., González Soltero R., et al. A critical mutualism-competition interplay underlies the loss of microbial diversity in sedentary lifestyle. Frontiers in Microbiology. 2020;10:3142. https://doi.org/10.3389/fmicb.2019.03142

5. Завьялова А.Н., Новикова В.П., Игнатова П.Д. Ось «микробиота — мышцы». Экспериментальная и клиническая гастроэнтерология. 2022;(11):60–69.

6. [Zavyalova A.N., Novikova V.P., Ignatova P.D. Axis "microbiota — muscles". Experimental and clinical gastroenterology. 2022;207(11):60–69. (In Russ.)]. https://doi.org/10.31146/1682-8658-ecg-207-11-60-69

7. Monda V., Villano I., Messina A., Valenzano A., Esposito T., Moscatelli F., et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell Longev. 2017;2017:3831972. https://doi.org/10.1155/2017/3831972

8. Mailing L.J., Allen J.M., Buford T.W., Fields C.J. , Woods J.A. Exercise and the gut microbiome: A review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport Sci. Rev. 2019;47:75–85. https://doi.org/10.1249/JES.0000000000000183

9. Gallè F., Valeriani F., Cattaruzza M.S., Ubaldi F., Romano S.V., Liguori G. Exploring the association between physical activity and gut microbiota composition: A review of current evidence. Ann. Ig. 2019;31(6):582–589. https://doi.org/10.7416/ai.2019.2318

10. Przewłócka K., Folwarski M., Kaźmierczak S., Iedlecka K., Skonieczna-Żydecka K., Kaczor J.J. Gut-M AxisExists and May Aff ect Skeletal Muscle Adaptation to Training. Nutrients. 2020;12(5):1451. https://doi.org/10.3390/nu12051451

11. Cerdá B., Pérez M., Pérez-Santiago J.D., Tornero-Aguilera J.F., González-Soltero R., Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front. Physiol. 2016;7:51. https://doi.org/10.3389/fphys.2016.00051

12. Mitchell C.M., Davy B.M., Hulver M.W., Neilson A.P., Bennett B.J., Davy K.P. Does Exercise Alter Gut Microbial Composition? A Systematic Review. Med. Sci. Sports Exerc. 2019;51(1):160–167. https://doi.org/10.1249/MSS.0000000000001760

13. Carey R.A., Montag D. Exploring the relationship between gut microbiota and exercise: Short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc. Med. 2021;7(2):e000930. https://doi.org/10.1136/bmjsem-2020-000930

14. Ribeiro F.M., Lopes G., da Cunha Nascimento D., Pires L., Mulder A.P., Franco O.L., Petriz B. An overview of the level of dietary support in the gut microbiota at different stages of life: A systematic review. Clin. Nutr. ESPEN. 2021;42:41–52. https:// doi.org/10.1016/j.clnesp.2021.01.024

15. Mariat D., Firmesse O., Levenez F., Guimaruaes V.D., Sokol H., Dore J., Corthier G., Furet J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. https://doi.org/10.1186/1471-2180-9-123

16. Solter P.F., Beasley V.R. Phycotoxins. In: Haschek W.M., Rousseaux C.G., Wallig M.A., eds. Haschek and Rousseaux's Handbook of Toxicologic Pathology. 3rd ed. Academic Press; 2013, p. 1155–1186. https://doi.org/10.1016/B978-0-12-415759-0.00038-8

17. Méheust R., Castelle С., Carnevali P. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. The ISME Journal. 2020;14(12):2907–2922. https://doi.org/10.1038/s41396-020-0716-1

18. Fukuchi M., Sugita M., Banjo M., Yonekura K., Sasuga Y. The impact of a competitive event and the efficacy of a lactic acid bacteria-fermented soymilk extract on the gut microbiota and urinary metabolites of endurance athletes: An open-label pilot study. PLoS One. 2022;17(1):e0262906. https://doi.org/10.1371/journal.pone.0262906

19. Bressa C., Bailén-Andrino M., Pérez-Santiago J., González-Soltero R., Pérez M., Montalvo-Lominchar M.G., et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE. 2017;12(2):e0171352. https://doi.org/10.1371/journal.pone.0171352

20. McKenna C.F., Salvador A.F., Hughes R.L., Scaroni S.E., Alamilla R.A,. Askow A.T., et al. Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: a randomized control trial. Am. J. Physiol. Endocrinol. Metab. 2021;320(5):e900–13. https://doi.org/10.1152/ajpendo.00574.2020

21. Clark A., Mach N. Exercise-induced stress behavior, gutmicrobiota-brain axis and diet: a systematic review for athletes. J. Int. Soc. Sports Nutr. 2016;13(1):43. https://doi.org/10.1186/s12970-016-0155-6

22. Aya V., Flórez A., Perez L., Ramírez J.D. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS ONE. 2021;16(2):e0247039. https://doi.org/10. 1371/journal.pone.0247039

23. Красникова Л.В., Гунькова П.И., Маркелова В.В. Микробиология молока и молочных продуктов: Лабораторный практикум. СПб.: НИУ ИТМО; 2013. [Krasnikova V., Gunkova P.I., Markelova V.V. Microbiology of milk and dairy products: Laboratory workshop. St. Petersburg: ITMO Research Institute; 2013 (In Russ.)].

24. Meisel H., Bockelmann W. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. In: Konings W.N., Kuipers O.P., In ’t Veld J.H.J.H., eds. Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht; 1999, p. 207–215. https://doi.org/10.1007/978-94-017-2027-4_10

25. Dong W., Wang Y., Liao S., Lai M., Peng L., Song G. Reduction in the Choking Phenomenon in Elite Diving Athletes Through Changes in Gut Microbiota Induced by Yogurt Containing Bifidobacterium animalis subsp. lactis BB-12: A Quasi Experimental Study. Microorganisms. 2020;8(4):597. https://doi.org/10.3390/microorganisms8040597

26. Dohnalová L., Lundgren P., Carty J.R.E., Goldstein N., Wenski S.L., Nanudorn P., et al. A microbiome-dependent gut–brain pathway regulates motivation for exercise. Nature. 2022;612 (7941):739–747. https://doi.org/10.1038/s41586-022-05525-z

27. Siebers M., Biedermann S., Fuss J. Do Endocannabinoids Cause the Runner’s High? Evidence and Open Questions. Neuroscientist. 2023;29(3):352–369. https://doi.org/10.1177/10738584211069981

28. Notting F., Pirovano W., Sybesma W., Kort R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. Gut Microbiome. 2023;4:e16. https://doi.org/10.1017/gmb.2023.14

29. Mukherjee A., Lordan C., Ross R.P., Cotter P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes. 2020;12(1):1802866. https://doi.org/10.1080/19490976.2020.1802866

30. Doden H.L., Wolf P.G., Gaskins H.R., Anantharaman K., Alves J.M.P., Ridlon J.M. Completion of the gut microbial epi-bile acid pathway. Gut Microbes. 2021;13(1):1–20. https://doi.org/10.1080/19490976.2021.1907271

31. Qin P., Zou Y., Dai Y., Luo G., Zhang X., Xiao L. Characterization a Novel Butyric Acid-Producing Bacterium Collinsellaaerofaciens Subsp. Shenzhenensis Subsp. Nov. Microorganisms. 2019;7(3):78. https://doi.org/10.3390/microorganisms7030078

32. Patrice D., Willem M. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front. Microbiol. 2017;8:1765. https://doi.org/10.3389/fmicb.2017.01765

33. Ottman N., Geerlings S.Y., Aalvink S., de Vos W.M., Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract. Res. Clin. Gastroenterol. 2017;31(6):637–642. https://doi.org/10.1016/j.bpg.2017.10.001

34. Morita H., Kano C., Ishii C., Kagata N., Ishikawa T., Hirayama A., et al. Bacteroides uniformis and its preferred substrate, α-cyclodextrin, enhance endurance exercise performance in mice and human males. Sci Adv. 2023;9(4):eadd2120. https://doi.org/10.1126/sciadv.add2120

35. Pei T., Zhu D., Yang S., Hu R., Wang F., Zhang J., et al. Bacteroides plebeius improves muscle wasting in chronic kidney disease by modulating the gut-renal muscle axis. J. Cell Mol. Med. 2022;26(24):6066–6078. https://doi.org/10.1111/jcmm.17626

36. Needleman I., Klein B., Hendrickson J., Davrandi M., Gallagher J., Ashley P., Spratt D. Microbiome analysis in elite sport. Br. J. Sports Med. 2021;55(S1):A132. https://doi.org/10.1136/bjsports-2021-ioc.316

37. Whisner C.M., Maldonado J., Dente B., Krajmalnik-Brown R., Bruening M. Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: A cross-sectional study. BMC Microbiol. 2018;18:210. https://doi.org/10.1186/s12866-018-1362-x

38. Dupuit M., Rance M., Morel C., Bouillon P., Boscaro A., Martin V., et al. Effect of concurrent training on body composition and gut microbiota in postmenopausal women with overweight or obesity. Med. Sci. Sports Exerc. 2022;54(3):517–529. https://doi.org/10.1249/MSS.0000000000002809

39. Clark A., Mach N. Exercise-induced stress behavior, gutmicrobiota-brain axis and diet: a systematic review for athletes. J. Int. Soc. Sports Nutr. 2016;13(1):43. https://doi.org/10.1186/s12970-016-0155-6

40. Zhu Q., Jiang S., Du G. Effects of exercise frequency on the gut microbiota in elderly individuals. 2020;9(8):e1053. https://doi.org/10.1002/mbo3.1053

41. Wang Z., Chen K., Wu C., Chen J., Pan H., Liu Y., et al. An emerging role of Prevotella histicola on estrogen deficiencyinduced bone loss through the gut microbiota-bone axis in postmenopausal women and in ovariectomized mice. Am. J. Clin. Nutr. 2021;114(4):1304–1313. https://doi.org/10.1093/ajcn/nqab194

42. Aya V., Jimenez P., Muñoz E., Ramírez J.D. Effects of exercise and physical activity on gut microbiota composition and function in older adults: a systematic review. BMC Geriatr. 2023;23(1):364. https://doi.org/10.1186/s12877-023-04066-y

43. Li G., Jin B., Fan Z. Mechanisms Involved in Gut Microbiota Regulation of Skeletal Muscle. Oxid. Med. Cell. Longev. 2022;2022:2151191. https://doi.org/10.1155/2022/2151191


Supplementary files

Review

For citations:


Shestopalov A.V., Fatkhullin R.F., Grigorieva T.V., Martykanova D.S., Davletova N.H., Kolesnikova I.M., Ivanova A.A., Roumiantsev S.A. Features of the intestinal microbiome in athletes engaged in martial arts. Sports medicine: research and practice. 2024;14(1):14-24. (In Russ.) https://doi.org/10.47529/2223-2524.2024.1.3

Views: 441


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)