Preview

Sports medicine: research and practice

Advanced search

Effects of intermittent hypoxia exposures and interval hypoxic training on exercise tolerance (narrative review)

https://doi.org/10.47529/2223-2524.2024.2.5

Abstract

The ability to perform steady-state submaximal exercise at a certain intensity (exercise tolerance) predicts endurance performance in athletes, but also the quality of life and the capability to perform daily living activities in older people and patients suffering from chronic diseases. Improvements in exercise tolerance following exercise training are well established but may also occur or be enhanced as a consequence of adaptations to other stimuli, e.g., repeated exposures to real or simulated altitude. Adaptive responses (i.e., beneficially impacting exercise tolerance) depend on the type and extent of hypoxia stimuli, in particular, whether they are applied during exercise (intermittent hypoxia training, IHT) or at rest (intermittent hypoxia exposure, IHE).

This brief review summarizes the evidence showing that IHT seems to elicit more pronounced effects on exercise tolerance than IHE. The most relevant adaptations to IHT are primarily provoked within the working skeletal muscles, whereas the rather small effects of IHE may include improved autonomic regulatory processes, endothelial function, cardioprotection, and increasing antioxidant capacity, all of which can probably be enhanced by combination with exercise (IHT). While IHE seems particularly suited for sedentary and elderly people or those suffering from chronic diseases, IHT will be more appropriate for young and already trained people. Thus, IHE is recommended for those with low exercise tolerance and can be followed up with exercise training in normoxia and finally with IHT.

About the Authors

J. Burtscher
University of Lausanne
Switzerland

Burtscher Johannes, Institute of Sport Sciences

Batiment Synathlon, CH-1015, Lausanne, Switzerland



O. S. Glazachev
First Moscow Sechenov Medical University (Sechenov University)
Russian Federation

Oleg S. Glazachev, Professor, Department of Normal Physiology

Trubetskaya Str. 8, bld.2, Moscow 119048, Russia



M. Kopp
Innsbruck University
Austria

Kopp Martin, PhD, Professor, Department of Sport Sciences

Fürstenweg 1856, А-6020 Innsbruck, Austria



M. Burtscher
Innsbruck University
Austria

Burtscher Martin, PhD, Professor, Department of Sport Sciences

Fürstenweg 1856, А-6020 Innsbruck, Austria



References

1. Burtscher M. Exercise limitations by the oxygen delivery and utilization systems in aging and disease: coordinated adaptation and deadaptation of the lung-heart muscle axis - a mini-review. Gerontology. 2013;59(4):289–296. https://doi.org/10.1159/000343990

2. Moore R.L., Thacker E.M., Kelley G.A., Musch T.I., Sinoway L.I., Foster V.L., et al. Effect of training/detraining on submaximal exercise responses in humans. J. Appl. Physiol. (1985). 1987;63(5):1719–1724. https://doi.org/10.1152/jappl.1987.63.5.1719

3. Burtscher J., Strasser B., Burtscher M., Millet G.P. The Impact of Training on the Loss of Cardiorespiratory Fitness in Aging Masters Endurance Athletes. Int. J. Environ. Res. Public Health. 2022;19(17):11050. https://doi.org/10.3390/ijerph191711050

4. Davis J.A., Frank M.H., Whipp B.J., Wasserman K. Anaerobic threshold alterations caused by endurance training in middle-aged men. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1979;46(6):1039–1046. https://doi.org/10.1152/jappl.1979.46.6.1039

5. Hickson R.C., Hagberg J.M., Ehsani A.A., Holloszy J.O. Time course of the adaptive responses of aerobic power and heart rate to training. Med. Sci. Sports Exerc. 1981;13(1):17–20. https://doi.org/10.1249/00005768-198101000-00012

6. Hurley B.F., Hagberg J.M., Allen W.K., Seals D.R. Young J.C., Cuddihee R.W., Holloszy J.O. Effect of training on blood lactate levels during submaximal exercise. J. Appl .Physiol. Respir. Environ. Exerc. Physiol. 1984;56(5): 1260–1264. https://doi.org/10.1152/jappl.1984.56.5.1260

7. Matsuo T., Saotome K., Seino S., Shimojo N., Matsushita A., Iemitsu M., et al. Effects of a low-volume aerobic-type interval exercise on VO2max and cardiac mass. Med. Sci. Sports Exerc. 2014;46(1):42–50. https://doi.org/10.1249/mss.0b013e3182a38da8

8. Vella C.A., Robergs R.A. A review of the stroke volume response to upright exercise in healthy subjects. Br. J. Sports Med. 2005;39(4):190–195. https://doi.org/10.1136/bjsm.2004.013037

9. Rosenblat M.A., Granata C., Thomas S.G. Effect of Interval Training on the Factors Influencing Maximal Oxygen Consumption: A Systematic Review and Meta-Analysis. Sports Med. 2022;52(6):1329–1352. https://doi.org/10.1007/s40279-021-01624-5

10. Burgomaster K.A., Heigenhauser G.J., Gibala M.J. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J. Appl. Physiol. (1985). 2006;100(6):2041–2047. https://doi.org/10.1152/japplphysiol.01220.2005

11. Raleigh J.P., Giles M.D., Islam H., Nelms M., Bentley R.F., Jones J.H., et al. Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Appl. Physiol. Nutr. Metab. 2018;43(10):1059–1068. https://doi.org/10.1139/apnm-2017-0864

12. Moon H.W., Sunoo S., Park H.Y., Lee D.J., Nam S.S. Effects of various acute hypoxic conditions on metabolic parameters and cardiac function during exercise and recovery. Springerplus. 2016;5(1):1294. https://doi.org/10.1186/s40064-016-2952-4

13. Burtscher M., Philadelphy M., Gatterer H., Burtscher J., Likar R. Submaximal exercise testing at low altitude for prediction of exercise tolerance at high altitude. J. Travel Med. 2018;25(1). https://doi.org/10.1093/jtm/tay011

14. Povea C., Schmitt L., Brugniaux J., Nicolet G., Richalet J.P., Fouillot J.P. Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Alt. Med. Biol. 2005;6(3):215–225. https://doi.org/10.1089/ham.2005.6.215

15. Sharma A.P., Saunders P.U., Garvican-Lewis L.A., Clark B., Stanley J., Robertson E.Y., et al. The Effect of Training at 2100-m Altitude on Running Speed and Session Rating of Perceived Exertion at Different Intensities in Elite Middle-Distance Runners. Int. J. Sports Physiol. Perform. 2017;12 (Suppl 2):S2147–S2152. https://doi.org/10.1123/ijspp.2016-0402

16. Terrados N., Jansson E., Sylvén C., Kaijser L. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J. Appl. Physiol. (1985). 1990;68(6):2369–2372. https://doi.org/10.1152/jappl.1990.68.6.2369

17. Melissa L., MacDougall J.D., Tarnopolsky M.A., Cipriano N., Green H.J. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions. Med. Sci. Sports Exerc. 1997;29(2):238–243. https://doi.org/10.1097/00005768-199702000-00012

18. Yu Q., Kong Z., Zou L., Chapman R., Shi Q., Nie J. Comparative efficacy of various hypoxic training paradigms on maximal oxygen consumption: A systematic review and network meta-analysis. J. Exerc. Sci. Fit. 2023;21(4):366–375. https://doi.org/10.1016/j.jesf.2023.09.001

19. Park H.Y., Jung W.S., Kim J., Hwang H., Lim K. Efficacy of intermittent hypoxic training on hemodynamic function and exercise performance in competitive swimmers. J. Exerc. Nutrition Biochem. 2018;22(4):32–38. https://doi.org/10.20463/jenb.2018.0028

20. Broskey N.T., Boss A., Fares E.J. et al. Exercise efficiency relates with mitochondrial content and function in older adults. Physiol. Rep. 2015;3(6):e12418. https://doi.org/10.14814/phy2.12418

21. Zhao Y.C., Guo W., Gao B.H. Hypoxic training upregulates mitochondrial turnover and angiogenesis of skeletal muscle in mice. Life Sci. 2022;291:119340. https://doi.org/10.1016/j.lfs.2021.119340

22. Ponsot E., Dufour S.P., Zoll J., Doutrelau S., N’Guessan B., Geny B. et al. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J. Appl Physiol (1985). 2006;100(4):1249–1257. https://doi.org/10.1152/japplphysiol.00361.2005

23. Geiser J., Vogt M., Billeter R., Zuleger C., Belforti F., Hoppeler H. Training high--living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int. J. Sports Med. 2001;22(8):579–585. https://doi.org/10.1055/s-2001-18521

24. Robach P., Bonne T., Flück D., Bürgi S., Toigo M., Jacobs R.A. et al. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med. Sci. Sports Exerc. 2014;46(10):1936–1945. https://doi.org/10.1249/mss.0000000000000321

25. Bakkman L., Sahlin K., Holmberg H.C., Tonkonogi M. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxf). 2007;190(3):243–251. https://doi.org/10.1111/j.1748-1716.2007.01683.x

26. Galvin H.M., Cooke K., Sumners D.P., Mileva K.N., Bowtell J.L. Repeated sprint training in normobaric hypoxia. Br. J. Sports Med. 2013;47 (Suppl 1):i74–79. https://doi.org/10.1136/bjsports-2013-092826

27. Arany Z., Foo S.Y., Ma Y., Ruas J.L., Bommi-Reddy A., Girnun G., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451(7181):1008–1012. https://doi.org/10.1038/nature06613

28. Li J., Li Y., Atakan M.M., Kuang J., Hu Y., Bishop D.J., Yan X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants (Basel). 2020;9(8):656. https://doi.org/10.3390/antiox9080656

29. Stickland M.K., Smith C.A., Soriano B.J., Dempsey J.A. Sympathetic restraint of muscle blood flow during hypoxic exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;296(5):R1538–1546. https://doi.org/10.1152/ajpregu.90918.2008

30. Haider T., Casucci G., Linser T., Faulhaber M., Gatterer H., Ott G., et al. Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J. Hypertens. 2009;27(8):1648–1654. https://doi.org/10.1097/hjh.0b013e32832c0018

31. Huang Z., Yang S., Li C., Xie X., Wang Y. The effects of intermittent hypoxic training on the aerobic capacity of exercisers: a systemic review and meta-analysis. BMC Sports Science, Medicine and Rehabilitation. 2023;15(1):174. https://doi.org/10.1186/s13102-023-00784-3

32. Gonchar O., Mankovska I. Moderate hypoxia/hyperoxia attenuates acute hypoxia-induced oxidative damage and improves antioxidant defense in lung mitochondria. Acta Physiol Hung. 2012;99(4):436–446. https://doi.org/10.1556/aphysiol.99.2012.4.8

33. Mallet R.T., Manukhina E.B., Ruelas S.S., Caffrey J.L., Downey H.F. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am. J. Physiol. Heart Circ. Physiol. 2018;315(2):H216-H232. https://doi.org/10.1152/ajpheart.00060.2018

34. Manukhina E.B., Downey H.F., Shi X., Mallet R.T. Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp. Biol. Med. (Maywood). 2016;241(12):1351–1363. https://doi.org/10.1177/1535370216649060

35. Shatilo V.B., Korkushko O.V., Ischuk V.A., Downey H.F., Serebrovskaya T.V. Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt. Med. Biol. 2008;9(1):43–52. https://doi.org/10.1089/ham.2007.1053

36. Axsom D., Cooper J. Cognitive dissonance and psychotherapy: The role of effort justification in inducing weight loss. J. Exp. Soc. Psychol. 1985;21(2):149–160. https://doi.org/10.1016/0022-1031(85)90012-5

37. Camacho-Cardenosa A., Camacho-Cardenosa M., Burtscher J., Olivares P.R., Olcina G., Brazo-Sayavera J. Intermittent Hypoxic Training Increases and Prolongs Exercise Benefits in Adult Untrained Women. High Alt. Med. Biol. 2024 May 8. https://doi.org/10.1089/ham.2023.0127

38. Bernardi L. Interval hypoxic training. In: Roach R.C., Wagner P.D., Hackett P.H. (eds). Hypoxia: From Genes to the Bedside. Boston, MA: Springer US; 2001, pp. 377–399. https://doi.org/10.1007/978-1-4757-3401-0_25

39. Burtscher M., Tsvetkova A., Tkatchouk E., Brauchle G., Mitterbauer G., Gulyaeva N. (eds), et al. Beneficial effects of short term hypoxia. In: Proceedings of the 11th International Hypoxia Symposium New York, NY: Kluwer Academic/Plenum Publishers; 1999, pp. 23–24.

40. Katayama K., Matsuo H., Ishida K., Mori S., Miyamura M. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Alt. Med. Biol. 2003;4(3):291–304. https://doi.org/10.1089/152702903769192250

41. Burtscher M., Gatterer H., Faulhaber M., Gerstgrasser W., Schenk K. Effects of intermittent hypoxia on running economy. Int. J. Sports Med. 2010;31(9):644–650. https://doi.org/10.1055/s-0030-1255067

42. Mekjavic I.B., Debevec T., Amon M., Keramidas M.E., Kounalakis S.N. Intermittent normobaric hypoxic exposures at rest: effects on performance in normoxia and hypoxia. Aviat. Space Environ. Med. 2012;83(10):942–950. https://doi.org/10.3357/asem.3332.2012

43. Miller A.J., Sauder C.L., Cauffman A.E., Blaha C.A., Leuenberger U.A. Endurance training attenuates the increase in peripheral chemoreflex sensitivity with intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;312(2):R223-R228. https://doi.org/10.1152/ajpregu.00105.2016

44. Burtscher M., Pachinger O., Ehrenbourg I., Mitterbauer G., Faulhaber M. et al. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int. J. Cardiol. 2004;96(2):247–254. https://doi.org/10.1016/j.ijcard.2003.07.021

45. Burtscher M., Haider T., Domej W., Linser T., Gatterer H., Faulhaber M., et al. Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respir. Physiol. Neurobiol. 2009;165(1):97–103. https://doi.org/10.1016/j.resp.2008.10.012

46. Fu Q., Levine B.D. Exercise and the autonomic nervous system. Handb. Clin. Neurol. 2013;117:147–160. https://doi.org/10.1016/B978-0-444-53491-0.00013-4

47. Bayer U., Likar R., Pinter G., Stettner H., Demschar S., Trummer B., et al. Intermittent hypoxic–hyperoxic training on cognitive performance in geriatric patients. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2017;3(1):114–122. https://doi.org/10.1016/j.trci.2017.01.002

48. Behrendt T., Bielitzki R., Behrens M., Glazachev O.S., Schega L. Effects of Intermittent Hypoxia-Hyperoxia Exposure Prior to Aerobic Cycling Exercise on Physical and Cognitive Performance in Geriatric Patients-A Randomized Controlled Trial. Front Physiol. 2022;13:899096. https://doi.org/10.3389/fphys.2022.899096

49. Behrendt T., Bielitzki R., Behrens M., Herold F., Schega L. Effects of Intermittent Hypoxia-Hyperoxia on Performance- and Health-Related Outcomes in Humans: A Systematic Review. Sports Med. Open. 2022;8(1):70. https://doi.org/10.1186/s40798-022-00450-x


Supplementary files

Review

For citations:


Burtscher J., Glazachev O.S., Kopp M., Burtscher M. Effects of intermittent hypoxia exposures and interval hypoxic training on exercise tolerance (narrative review). Sports medicine: research and practice. 2024;14(2):16-23. https://doi.org/10.47529/2223-2524.2024.2.5

Views: 410


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)