Preview

Sports medicine: research and practice

Advanced search

The effect of a single high dose of caffeine on the visual reaction time of young elite soccer players at rest and during varying intensities of physical activity

https://doi.org/10.47529/2223-2524.2024.3.7

Abstract

Aim: To examine the effect of a single high dose of caffeine on visual reaction time (VRT) in young elite soccer players at rest and under different intensity physical exercise conditions.

Materials and methods: In a double-blind, placebo-controlled randomized study with a balanced design, 54 soccer players from one of the leading Russian soccer academies, aged 15 to 17 years (n = 54, age — 15.9 ± 0.8 years, height — 180 ± 8.3 cm, weight — 69.5 ± 8.8 kg, BMI — 21.4 ± 1.4 kg/m²), participated. After a standardized warm-up, all participants completed a battery of tests, including a 30-meter sprint, countermovement jump, change-of-direction running, T-test, dribbling, and repeated sprint ability test.

Sixty minutes before VRT measurement, all participants received either 400 mg of caffeine, presented as caffeine or placebo, or placebo, presented as placebo or caffeine. VRT was measured four times: before caffeine intake, 60 minutes after intake (before warm-up), after the warm-up, and after completing the last test.

Results: No significant effect of caffeine on VRT was found after its administration in any of the groups (p > 0.05). When analyzing the changes in VRT throughout the testing process, from measurements taken before the warm-up to those taken after its completion, no significant differences were observed in any of the groups (p > 0.01).

Conclusion: A single oral intake of 400 mg of caffeine, and the belief that it was consumed, does not affect visual reaction time in young elite soccer players either at rest or after maximal intensity physical exercise.

About the Authors

T. M. Vakhidov
High Performance Sports Laboratory, Sechenov First Moscow State Medical University
Russian Federation

Timur M. Vakhidov, laboratory assistant

2A building 2, 3rd Peschanaya str., Moscow, 125252



E. S. Kapralova
Sklifosovskiy Institute of Clinical Medicine Sechenov First Moscow State Medical University
Russian Federation

Elizaveta S. Kapralova, Assistant of Department of Sport Medicine and Medical Rehabilitation

2A building 2, 3rd Peschanaya str., Moscow, 125252



G. I. Malyakin
High Performance Sports Laboratory, Sechenov First Moscow State Medical University
Russian Federation

Georgiy I. Malyakin, junior Researcher

2A building 2, 3rd Peschanaya str., Moscow, 125252



E. D. Koroleva
High Performance Sports Laboratory, Sechenov First Moscow State Medical University
Russian Federation

Egana D. Koroleva, junior Researcher

2A building 2, 3rd Peschanaya str., Moscow, 125252



D. S. Baranova
Sklifosovskiy Institute of Clinical Medicine Sechenov First Moscow State Medical University
Russian Federation

Daria S. Baranova, student

2 building 9, Bolshaya Pirogovskaya str., Moscow, 119435



E. N. Bezuglov
High Performance Sports Laboratory, Sechenov First Moscow State Medical University
Russian Federation

Eduard N. Bezuglov, Cand. Sci. (Medicine), Associate Professor of Department of Sport Medicine and Medical Rehabilitation; head of High Performance Sports Laboratory

2A building 2, 3rd Peschanaya str., Moscow, 125252



References

1. Guest N.S., VanDusseldorp T.A., Nelson M.T., Grgic J., Schoenfeld B.J., Jenkins N.D., et al. International society of sports nutrition position stand: caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021;18(1):1. https://doi.org/10.1186/s12970-02000383-4

2. Koroleva E.D., Butovskiy M.S., Malyakin G.I., Lazarev A.M., Telyshev D.V., Vakhidov T.M. The prevalence of alcohol and pre-workout caffeine consumption and their effect on injuries and sleep disorders in young elite soccer players. Sports medicine: research and practice. 2023;13(2):5–12. (In Russ.). https://doi.org/10.47529/2223-2524.2023.2.4

3. Chester N., Wojek N. Caffeine consumption amongst British athletes following changes to the 2004 WADA prohibited list. Int. J. Sports Med. 2008;29(06):524–528. https://doi.org/10.1055/s-2007-989231

4. Grgic J., Trexler E.T., Lazinica B., Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018;15(1):11. https://doi.org/10.1186/s12970-018-0216-0

5. Southward K., Rutherfurd-Markwick K.J., Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta–analysis. Sports Med. 2018;48(8):1913–1928. https://doi.org/10.1007/s40279-018-0939-8

6. Chtourou H., Trabelsi K., Ammar A., Shephard R.J., Bragazzi N.L. Acute effects of an “Energy drink” on short-term maximal performance, reaction times, psychological and physiological parameters: insights from a randomized double-blind, placebo-controlled, counterbalanced crossover trial. Nutrients. 2019;11(5):992. https://doi.org/10.3390/nu11050992

7. Hoffman J.R., Kang J., Ratamess N.A., Hoffman M.W., Tranchina C.P., Faigenbaum A.D. Examination of a pre-exercise, high energy supplement on exercise performance. J. Int. Soc. Sports Nutr. 2009;6(1):1–8. https://doi.org/10.1186/1550-2783-6-2

8. Lieberman H.R., Tharion W.J., Shukitt-Hale B., Speckman K.L., Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during US Navy SEAL training. Psychopharmacology. 2002;164(3):250–261. https://doi.org/10.1007/s00213-002-1217-9

9. Müller S., Gabbett T., McNeil D. Reducing injury risk and improving skill: How a psycho-perceptual-motor approach can benefit high-performance sport. Sports Health: A Multidisciplinary Approach. 2023;15(3):315–317. https://doi.org/10.1177/19417381231156437

10. Dulova E.I., Reshetova A.A., Igolkina A.E., Kravchuk D.A., Mitin I.N., Nazarov K.S., Zholinskiy A.V. Psychophysiological and psychological features of elite young volleyball players. Sports medicine: research and practice. 2020;10(1):76–84. (In Russ.). https://doi.org/10.17238/ISSN2223-2524.2020.1.76

11. Nascimento H., Martinez-Perez C., Alvarez-Peregrina C., Sánchez-Tena M.Á. Citations network analysis of vision and sport. Int. J. Environ. Res. Public Health. 2020;17(20):7574. https://doi.org/10.3390/ijerph17207574

12. Vater C., Wolfe B., Rosenholtz R. Peripheral vision in real-world tasks: A systematic review. Psychon. Bul. Rev. 2022;29(5):1531–1557. https://doi.org/10.3758/s13423-022-02117-w

13. Presta V., Vitale C., Ambrosini L., Gobbi G. Stereopsis in sports: visual skills and visuomotor integration models in professional and non-professional athletes. Int. J. Environ. Res. Public Health. 2021;18(21):11281. https://doi.org/10.3390/ijerph182111281

14. Medvedev I.B., Gusakov M.V., Borisova M.U., Blankova T.I., Medvedeva N.I., Dergacheva N.N. The impact of visual functions on athletes’ results and methods of their improvements. Sports medicine: research and practice. 2023;13(1):97–102. (In Russ.). https://doi.org/10.47529/2223-2524.2023.1.4

15. Barrett B.T., Cruickshank A.G., Flavell J.C., Bennett S.J., Buckley J.G., Harris J.M., Scally A.J. Faster visual reaction times in elite athletes are not linked to better gaze stability. Sci. Rep. 2020;10(1):13216. https://doi.org/10.1038/s41598-020-69975-z

16. Kuan Y.M., Zuhairi N.A., Manan F., Knight V.F., Omar R. Visual reaction time and visual anticipation time between athletes and non-athletes. Malaysian Journal of Public Health Medicine. 2018;1:135–141.

17. Quintana M.S., Román I.R., Calvo A.L., Molinuevo J.S. Perceptual visual skills in young highly skilled basketball players. Percept. Mot. Skills. 2007;104(2):547–561. https://doi.org/10.2466/pms.104.2.547-561

18. Kalberer D., Zagelbaum A., Hersh P., Mellody J., Montgomery K., Sison C.P., Zagelbaum B. Peripheral Awareness and Visual Reaction Time in Professional Football Players in the National Football League (NFL). Optometry & Visual Performance. 2017;5(4):158–163.

19. Loureiro Jr L.F.B., Freitas Jr. P.B. Influence of the performance level in badminton players in neuromotor aspects during a target-pointing task. Revista Brasileira de Medicina do Esporte. 2012;18:203–207. https://doi.org/10.1590/S1517-86922012000300014

20. Steff N., Badau D., Badau A. Study on the Impact of Implementing an Exercise Program Using Fitlight Technology for the Development of Upper Limb Coordinative Abilities in Basketball Players. Sensors. 2024;24(11):3482. https://doi.org/10.3390/s24113482

21. Avedesian J.M., Forbes W., Covassin T., Dufek J.S. Influence of cognitive performance on musculoskeletal injury risk: a systematic review. Am. J. Sports Med. 2022;50(2):554–562. https://doi.org/10.1177/0363546521998081

22. Swanik C.B., Covassin T., Stearne D.J., Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am. J. Sports Med. 2007;35(6):943–948. https://doi.org/10.1177/0363546507299532

23. Pavelka R., Třebický V., Třebická Fialová J., Zdobinský A., Coufalová K., Havlíček J., Tufano J.J. Acute fatigue affects reaction times and reaction consistency in Mixed Martial Arts fighters. PloS one. 2020;15(1):e0227675. https://doi.org/10.1371/journal.pone.0227675

24. Davranche K., Audiffren M., Denjean A. A distributional analysis of the effect of physical exercise on a choice reaction time task. J. Sports Sci. 2006;24(3):323–329. https://doi.org/10.1080/02640410500132165

25. Tsorbatzoudis H., Barkoukis V., Danis A., Grouios G. Physical exertion in simple reaction time and continuous attention of sport participants. Perceptual and motor skills. 1998;86(2):571–576. https://doi.org/10.2466/pms.1998.86.2.571

26. Vartiainen M.V., Holm A., Lukander J., Lukander K., Koskinen S., Bornstein R., Hokkanen L. A novel approach to sports concussion assessment: computerized multilimb reaction times and balance control testing. J. Clin. Exp. Neuropsychol. 2016;38(3):293–307. https://doi.org/10.1080/13803395.2015.1107031

27. Farraye B.T., Simon J.E., Chaput M., Kim H., Monfort S.M., Grooms D.R. Development and Reliability of a Visual-Cognitive Reactive Triple Hop Test. J. Sport Rehabil. 2023;32(7):802–809. https://doi.org/10.1123/jsr.2022-0398

28. Del Rossi G. Evaluating the recovery curve for clinically assessed reaction time after concussion. J. Athl. Train. 2017;52(8):766–770. https://doi.org/10.4085/1062-6050-52.6.02

29. Charron J., Garcia J.E.V., Roy P., Ferland P.-M., Comtois A.S. Physiological responses to repeated running sprint ability tests: a systematic review. Int. J. Exerc. Sci. 2020;13(4):1190. https://doi.org/10.70252/nxqi1037

30. Sullivan J., Roberts S.J., Mckeown J., Littlewood M., McLaren-Towlson C., Andrew M., Enright K. Methods to predict the timing and status of biological maturation in male adolescent soccer players: A narrative systematic review. Plos One. 2023;18(9):e0286768. https://doi.org/10.1371/journal.pone.0286768

31. Zolotareva A.A. Adaptation of the Russian version of the Generalized Anxiety Disorder-7. Counseling Psychology and Psychotherapy. 2023;31(4):31–46. (In Russ.). https://doi.org/10.17759/cpp.2023310402

32. Irons J.G., Bassett D.T., Prendergast C.O., Landrum R.E., Heinz A.J. Development and initial validation of the caffeine consumption questionnaire-revised. Journal Caffeine Research. 2016;6(1):20–25. https://doi.org/10.1089/jcr.2015.0012

33. Batista P., Peixoto J., Oliveira-Silva P. An exploratory study about the characterization of caffeine consumption in a Portuguese sample. Behav. Sci. 2022;12(10):386. https://doi.org/10.3390/bs12100386

34. Ricotti L., Rigosa J., Niosi A., Menciassi A. Analysis of balance, rapidity, force and reaction times of soccer players at different levels of competition. PloS One. 2013;8(10):e77264. https://doi.org/10.1371/journal.pone.0077264.

35. Shabir A., Hooton A., Tallis J., F. Higgins M. The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients. 2018;10(10):1528. https://doi.org/10.3390/nu10101528

36. Schneider R., Grüner M., Heiland A., Keller M., Kujanová Z., Peper M., Riegl M., Schmidt S., Volz P., Walach H. Effects of expectation and caffeine on arousal, well-being, and reaction time. Int. J. Behav. Med. 2006;13:330–339. https://doi.org/10.1207/s15327558ijbm1304_8

37. Wilczyńska D.M., Abrahamsen F., Popławska A., Aschenbrenner P., Dornowski M. Level of anxiety and results of psychomotor tests in young soccer players of different performance levels. Biol. Sport. 2022;39(3):571–577. https://doi.org/10.5114/biolsport.2022.106387

38. Ozan M., Buzdagli Y., Eyipinar C.D., Baygutalp N.K., Yüce N., Oget F., Kan E., Baygutalp F. Does Single or Combined Caffeine and Taurine Supplementation Improve Athletic and Cognitive Performance without Affecting Fatigue Level in Elite Boxers? A Double-Blind, Placebo-Controlled Study. Nutrients. 2022;14(20):4399. https://doi.org/10.3390/nu14204399

39. Główka N., Malik J., Podgórski T., Stemplewski R., Maciaszek J., Ciążyńska J., Zawieja E.E., et al. The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit – a randomized placebo-controlled crossover trial. J. Int. Soc. Sports Nutr. 2024;21(1):2301384. https://doi.org/10.1080/15502783.2023.2301384

40. Saville C.W., de Morree H., Dundon N.M. Effects of caffeine on reaction time are mediated by attentional rather than motor processes. Psychopharmacology. 2018;235(3):749–759. https://doi.org/10.1007/s00213-017-4790-7

41. Prefaut C., Durand F., Mucci P., Caillaud C. Exerciseinduced arterial hypoxaemia in athletes: a review. Sports Med. 2000;30(1):47–61. https://doi.org/10.2165/00007256-200030010-00005

42. Pun M., Guadagni V., Bettauer K.M., Drogos L.L., Aitken J., Hartmann S.E., et al. Effects on cognitive functioning of acute, subacute and repeated exposures to high altitude. Front. Physiol. 2018;9:1131. https://doi.org/10.3389/fphys.2018.01131

43. Wahl D., Cavalier A.N., LaRocca T.J. Novel strategies for healthy brain aging. Exerc. Sport Sci. Rev. 2021;49(2):115–125. https://doi.org/10.1249/JES.0000000000000242

44. Quan H., Koltai E., Suzuki K., Aguiar Jr A.S., Pinho R., Boldogh I., Berkes I., Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis of Dis. 2020;1866(10):165778. https://doi.org/10.1016/j.bbadis.2020.165778

45. Djordjevic D., Jakovljevic V., Cubrilo D., Zlatko vic M., Zivkovic V., Djuric D. Coordination between nitric oxide and superoxide anion radical during progressive exercise in elite soccer players. Open Biochem. J. 2010;4:100–106. https://doi.org/10.2174/1874091X01004010100

46. Morís Fernández L., Vadillo M. A. Flexibility in reaction time analysis: many roads to a false positive? R. Soc. Open Sci. 2020;7(2):190831. https://doi.org/10.1098/rsos.190831

47. Green C.S., Bavelier D. Action video game modifies visual selective attention. Nature. 2003;423(6939):534–537. https://doi.org/10.1038/nature01647

48. Klasnja A., Milenovic N., Lukac S., Knezevic A., Klasnja J., Karan Rakic V. The effects of regular physical activity and playing video games on reaction time in adolescents. Int. J. Environ. Res. Public Health. 2022;19(15):9278. https://doi.org/10.3390/ijerph19159278

49. Ziv G., Lidor R., Levin O. Reaction time and working memory in gamers and non-gamers. Sci. Rep. 2022;12(1):6798. https://doi.org/10.1038/s41598-022-10986-3

50. Chen X., Zhang L., Yang D., Li C., An G., Wang J., et al. Effects of caffeine on event-related potentials and neuropsychological indices after sleep deprivation. Front. Behav. Neurosci. 2020;14:108. https://doi.org/10.3389/fnbeh.2020.0010


Supplementary files

Review

For citations:


Vakhidov T.M., Kapralova E.S., Malyakin G.I., Koroleva E.D., Baranova D.S., Bezuglov E.N. The effect of a single high dose of caffeine on the visual reaction time of young elite soccer players at rest and during varying intensities of physical activity. Sports medicine: research and practice. 2024;14(3):35-45. (In Russ.) https://doi.org/10.47529/2223-2524.2024.3.7

Views: 458


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)