Preview

Sports medicine: research and practice

Advanced search

The kinetics of cardiac troponin I in saliva following 5-km and 21-km running trials

https://doi.org/10.47529/2223-2524.2025.2.5

Abstract

Objective: to compare changes in salivary concentrations of cardiac troponin I (cTnI) in athletes after 5-km and 21-km running trials.

Materials and methods: 32 male athletes were recruited and assigned to two groups. Participants of group 1 (n = 16) completed a 5-km running trial, while participants of group 2 (n = 16) completed a 21-km running trial. Unstimulated saliva was collected using the spitting method at pre-exercise (T1), post-exercise (T2), 4 hours post-exercise (T3), and 24 hours post-exercise (T4). Salivary concentrations of cTnI were measured using a Getein analyser. Data are expressed as median and interquartile range (Me [IQR]).

Results: Salivary levels of cTnI increased significantly in both running trials, with higher peak values occurring after the 5-km running trial compared with those of the 21-km running trial. cTnI levels in saliva rose at T2 (group 1: 0.38 [0.34–0.41] ng/mL; group 2: 0.33 [0.29–0.35] ng/mL) compared to T1 (group 1: 0.14 [0.13–0.16] ng/mL; group 2: 0.15 [0.13–0.17] ng/mL), peaked at T3 (group 1: 0.59 [0.54–0.64] ng/mL; group 2: 0.40 [0.38–0.44] ng/mL), and returned to baseline by T4 (group 1: 0.17 [0.13–0.20] ng/mL; group 2: 0.13 [0.11–0.17] ng/mL).

Conclusion: A 5-km running trial induced a greater increase in salivary levels of cTnI in athletes compared to a 21-km running trial, indicating a dominant role of exercise intensity in cTnI release.

About the Author

A. N. Ovchinnikov
National Research Lobachevsky State University of Nizhny Novgorod
Russian Federation

Aleksandr N. Ovchinnikov, Associate Professor, Department of Sports Medicine and Psychology

23 Gagarin Avenue, Nizhny Novgorod, 603022



References

1. Aengevaeren V.L., Baggish A.L., Chung E.H., George K., Kleiven Ø., Mingels A.M.A., Ørn S., Shave R.E., Thompson P.D., Eijsvogels T.M.H. Exercise-induced cardiac troponin elevations: from underlying mechanisms to clinical relevance. Circulation. 2021;144(24):1955–1972. https://doi.org/10.1161/CIRCULATIONAHA.121.056208

2. Aengevaeren V.L., Froeling M., Hooijmans M.T., Monte J.R., van den Berg-Faay S., Hopman M.T.E., Strijkers G.J., Nederveen A.J., Bakermans A.J., Eijsvogels T.M.H. Myocardial Injury and Compromised Cardiomyocyte Integrity Following a Marathon Run. JACC Cardiovasc. Imaging. 2020;13(6):1445–1447. https://doi.org/10.1016/j.jcmg.2019.12.020

3. Árnadóttir Á., Pedersen S., Bo Hasselbalch R., Goetze J.P., Friis-Hansen L.J., Bloch-Münster A.M., Skov Jensen J., Bundgaard H., Iversen K. Temporal Release of High-Sensitivity Cardiac Troponin T and I and Copeptin After Brief Induced Coronary Artery Balloon Occlusion in Humans. Circulation. 2021;143(11):1095–1104. https://doi.org/10.1161/CIRCULATIONAHA.120.046574

4. Boström P., Mann N., Wu J., Quintero P.A., Plovie E.R., Panáková D., Gupta R.K., Xiao C., MacRae C.A., Rosenzweig A., Spiegelman B.M. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072–1083. https://doi.org/10.1016/j.cell.2010.11.036

5. Boutet M., Hüttner I., Rona G. Permeability alteration of sarcolemmal membrane in catecholamine-induced cardiac muscle cell injury. In vivo studies with fine structural diffusion tracer horse radish peroxidase. Lab. Invest. 1976;34(5):482–488.

6. Chaulin A.M. Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). Int. J. Mol. Sci. 2021;22(20):10928. https://doi.org/10.3390/ijms222010928

7. Chaulin A.M. Metabolic Pathway of Cardiospecific Troponins: From Fundamental Aspects to Diagnostic Role (Comprehensive Review). Front. Mol. Biosci. 2022;9:841277. https://doi.org/10.3389/fmolb.2022.841277

8. Cheng W., Li B., Kajstura J., Li P., Wolin M.S., Sonnenblick E.H., Hintze T.H., Olivetti G., Anversa P. Stretch-induced programmed myocyte cell death. J. Clin. Invest. 1995;96(5):2247–2259. https://doi.org/10.1172/JCI118280

9. Clarke M.S., Caldwell R.W., Chiao H., Miyake K., Mc-Neil P.L. Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ. Res. 1995;76(6):927–934. https://doi.org/10.1161/01.res.76.6.927

10. Feng J., Schaus B.J., Fallavollita J.A., Lee T.C., Canty J.M. Jr. Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001;103(16):2035–2037. https://doi.org/10.1161/01.cir.103.16.2035

11. Gohel V., Jones J.A., Wehler C.J. Salivary biomarkers and cardiovascular disease: a systematic review. Clin. Chem. Lab. Med. 2018;56(9):1432–1442. https://doi.org/10.1515/cclm-2017-1018

12. Hammarsten O., Mair J., Möckel M., Lindahl B., Jaffe A.S. Possible mechanisms behind cardiac troponin elevations. Biomarkers. 2018;23(8):725-734. https://doi.org/10.1080/1354750X.2018.1490969

13. Hickman P.E., Potter J.M., Aroney C., Koerbin G., Southcott E., Wu A.H., Roberts M.S. Cardiac troponin may be released by ischemia alone, without necrosis. Clin. Chim. Acta. 2010;411(5-6):318–323. https://doi.org/10.1016/j.cca.2009.12.009

14. Huang X., Bai S., Luo Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine (Baltimore). 2024;103(15):e37793. https://doi.org/10.1097/MD.0000000000037793

15. Keller T., Zeller T., Peetz D., Tzikas S., Roth A., Czyz E., et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N. Engl. J. Med. 2009;361(9):868–877. https://doi.org/10.1056/NEJMoa0903515

16. Legaz-Arrese A., Sitko S., Cirer-Sastre R., Mayolas-Pi C., Jiménez-Gaytán R.R., Orocio R.N., García R.L., Corral P.G.M., Reverter-Masia J., George K., Carranza-García L.E. The kinetics of cardiac troponin T release during and after 1-and 6-h maximal cycling trials. J. Sci. Med. Sport. 2025;28(1):3–8. https://doi.org/10.1016/j.jsams.2024.08.207

17. Mair J., Lindahl B., Hammarsten O., Müller C., Giannitsis E., Huber K., Möckel M., Plebani M., Thygesen K., Jaffe A.S. How is cardiac troponin released from injured myocardium? Eur. Heart J. Acute Cardiovasc. Care. 2018;7(6):553–560. https://doi.org/10.1177/2048872617748553

18. Marjot J., Kaier T.E., Martin E.D., Reji S.S., Copeland O., Iqbal M., Goodson B., Hamren S., Harding S.E., Marber M.S. Quantifying the Release of Biomarkers of Myocardial Necrosis from Cardiac Myocytes and Intact Myocardium. Clin. Chem. 2017;63(5):990–996. https://doi.org/10.1373/clinchem.2016.264648

19. Mousavi N., Czarnecki A., Kumar K., Fallah-Rad N., Lytwyn M., Han S.Y., et al. Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am. J. Cardiol. 2009;103(10):1467–1472. https://doi.org/10.1016/j.amjcard.2009.01.294

20. O’Hanlon R., Wilson M., Wage R., Smith G., Alpendurada F.D., Wong J., et al. Troponin release following endurance exercise: is inflammation the cause? a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2010;12(1):38. https://doi.org/10.1186/1532-429X-12-38

21. Ovchinnikov A.N. Utilizing saliva for non-invasive detection of exercise-induced myocardial injury with point-of-care cardiac troponin-I. Sci. Rep. 2025;15(1):27283. https://doi.org/10.1038/s41598-025-12380-1

22. Page E., Upshaw-Earley J., Goings G. Permeability of rat atrial endocardium, epicardium, and myocardium to large molecules. Stretch-dependent effects. Circ. Res. 1992;71(1):159–173. https://doi.org/10.1161/01.res.71.1.159

23. Pelliccia A., Solberg E.E., Papadakis M., Adami P.E., Biffi A., Caselli S., et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2019;40(1):19–33. https://doi.org/10.1093/eurheartj/ehy730

24. Saviñon-Flores A.I., Saviñon-Flores F., Trejo G., Méndez E., Ţălu Ş., González-Fuentes M.A., Méndez-Albores A. A review of cardiac troponin I detection by surface enhanced Raman spectroscopy: Under the spotlight of point-of-care testing. Front. Chem. 2022;10:1017305. https://doi.org/10.3389/fchem.2022.1017305

25. Shave R., Baggish A., George K., Wood M., Scharhag J., Whyte G., Gaze D., Thompson P.D. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J. Am. Coll. Cardiol. 2010;56(3):169–176. https://doi.org/10.1016/j.jacc.2010.03.037

26. Vujic A., Lerchenmüller C., Wu T.D., Guillermier C., Rabolli C.P., Gonzalez E., et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat. Commun. 2018;9(1):1659. https://doi.org/10.1038/s41467-018-04083-1

27. Weil B.R., Suzuki G., Young R.F., Iyer V., Canty J.M. Jr. Troponin Release and Reversible Left Ventricular Dysfunction After Transient Pressure Overload. J. Am. Coll. Cardiol. 2018;71(25):2906–2916. https://doi.org/10.1016/j.jacc.2018.04.029

28. Weil B.R., Young R.F., Shen X., Suzuki G., Qu J., Malhotra S., Canty J.M. Jr. Brief Myocardial Ischemia Produces Cardiac Troponin I Release and Focal Myocyte Apoptosis in the Absence of Pathological Infarction in Swine. JACC Basic Transl. Sci. 2017;2(2):105–114. https://doi.org/10.1016/j.jacbts.2017.01.006

29. Wołyniec W., Ratkowski W., Renke J., Renke M. Changes in Novel AKI Biomarkers after Exercise. A Systematic Review. Int. J. Mol. Sci. 2020;21(16):5673. https://doi.org/10.3390/ijms21165673

30. World Medical Association declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. JAMA. 1997;277(11):925–926.


Review

For citations:


Ovchinnikov A.N. The kinetics of cardiac troponin I in saliva following 5-km and 21-km running trials. Sports medicine: research and practice. (In Russ.) https://doi.org/10.47529/2223-2524.2025.2.5

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)