Preview

Sports medicine: research and practice

Advanced search

Resistance training significantly increases insulin-like growth factor-1 levels in women with a sedentary lifestyle: A randomized controlled trial

https://doi.org/10.47529/2223-2524.2025.3.7

Abstract

Purpose of the study: To determine the effects of physical exercise resistance training and aerobic exercise on Insulin-Like Growth Factor-1 (IGF-1) levels in women with a sedentary lifestyle.

Methods: Thirty-three female respondents with sedentary lifestyle were randomly selected and divided into three groups: resistance training group (n = 11), aerobic training group (n = 11), and control group (n = 11). Study participants were between 18 and 26 years old. Data collection took place over the course of two days, beginning with the collection of information regarding the characteristics of the subjects. Before the exercise, the subjects had their blood drawn as pre-test data. The subjects were then instructed to warm up. Then, the subjects performed physical exercises according to their group. After the exercise intervention, blood samples were taken as post-test data.

Results: The data showed that training significantly increased IGF-1 levels in resistance training group (p = 0.012).

Conclusion: acute resistance exercise has the potential to raise IGF-1 levels. Growth hormone’s effects are mediated by IGF-1, which is also essential for controlling somatic growth and organ development, including brain. Resistance training can be recommended as an alternative exercise for people with a sedentary lifestyle to improve cognitive function.

About the Authors

N. Ayubi
Universitas Negeri Surabaya
Indonesia

Ayubi Novadri, Dr., Lecturer and Researcher, Department of Physical Education, Health and Recreation, Universitas Negeri Surabaya, Jl. Lidah Wetan, Jawa Timur, Surabaya, 60213, Indonesia.



J. C. Wibawa
STKIP PGRI Trenggalek
Indonesia

Wibawa Junian Cahyanto, M.Kes., Lecturer, Department of Physical Education, Health and Recreation, STKIP PGRI Trenggalek, Jl. Supriyadi str., 22, Trenggalek, Jawa Timur, 66319, Indonesia.



V. M. Sceisarriya
STKIP PGRI Trenggalek
Indonesia

Vega Mareta Sceisarriya, M.Ed., Lecturer, Department of Physical Education, Health and Recreation, STKIP PGRI Trenggalek, Jl. Supriyadi str., 22, Trenggalek, Jawa Timur, 66319, Indonesia.



P. B. Dafun Jr.
Mariano Marcos State University
Philippines

Procopio B. Dafun Jr., M.Ed., Lecturer, Department of Physical Education, Mariano Marcos State University Quiling str., 16, Batac, Ilocos Norte, 2906, Philippines.



References

1. Fried L.P., Cohen A.A., Xue Q.L., Walston J., Bandeen- Roche K., Varadhan R. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging. 2021;1(1):36–46. https://doi.org/10.1038/s43587-020-00017-z

2. Doody P., Lord J.M., Greig C.A., Whittaker A.C. Frailty: Pathophysiology, Theoretical and Operational Definition(s), Impact, Prevalence, Management and Prevention, in an Increasingly Economically Developed and Ageing World. Gerontology. 2023;69(8):927–945. https://doi.org/10.1159/000528561

3. Izquierdo M., de Souto Barreto P., Arai H., Bischoff-Ferrari H.A., Cadore E.L., Cesari M., et al. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR). J. Nutr. Heal. Aging. 2025;29(1):100401. https://doi.org/10.1016/j.jnha.2024.100401

4. Guthold R., Stevens G.A., Riley L.M., Bull F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Heal. 2018;6(10):e1077–e1086. https://doi.org/10.1016/S2214-109X(18)30357-7

5. Autio J., Stenbäck V., Gagnon D.D., Leppäluoto J., Herzig K.H. (Neuro) peptides, physical activity, and cognition. J. Clin. Med. 2020;9(8):1–25. https://doi.org/10.3390/jcm9082592

6. Bota M., Sporns O., Swanson L.W. Architecture of the cerebral cortical association connectome underlying cognition. Proc. Natl. Acad. Sci. U. S. A. 2015;112(16):E2093–E2101 https://doi.org/10.1073/pnas.1504394112

7. Kujach S., Olek R.A., Byun K., Suwabe K., Sitek E.J., Ziemann E., Laskowski R., Soya H. Acute Sprint Interval Exercise Increases Both Cognitive Functions and Peripheral Neurotrophic Factors in Humans: The Possible Involvement of Lactate. Front. Neurosci. 2020;13:1455. https://doi.org/10.3389/fnins.2019.01455

8. Ye G., Xiao Z., Luo Z., Huang X., Abdelrahim M.E.A., Huang W. Resistance training effect on serum insulin-like growth factor 1 in the serum: a meta-analysis. Aging Male. 2021;23(5):1471–1479. https://doi.org/10.1080/13685538.2020.1801622

9. de Alcantara Borba D., da Silva Alves E., Rosa J.P.P., Facundo L.A., Costa C.M.A., Silva A.C., Narciso F.V., Silva A., de Mello M.T. Can IGF-1 serum levels really be changed by acute physical exercise? A systematic review and meta-analysis. J. Phys. Act. Heal. 2020;17(5):575–584. https://doi.org/10.1123/jpah.2019-0453

10. Zhang Y., Zhang B., Gan L., Ke L., Fu Y., Di Q., Ma X. Effects of online bodyweight high-intensity interval training intervention and health education on the mental health and cognition of sedentary young females. Int. J. Environ. Res. Public Health. 2021;18(1):302. https://doi.org/10.3390/ijerph18010302

11. Wilke J., Mohr L., Yuki G., Bhundoo A.K., Jiménez-Pavón D., Laiño F., et al. Train at home, but not alone: a randomised controlled multicentre trial assessing the effects of live-streamed tele-exercise during COVID-19-related lockdowns. Br. J. Sports Med. 2022;56(12):667–675. https://doi.org/10.1136/bjsports-2021-104994

12. Vazquez-Guajardo M., Rivas D., Duque G. Exercise as a Therapeutic Tool in Age-Related Frailty and Cardiovascular Disease: Challenges and Strategies. Can. J. Cardiol. 2024;40(8):1458–1467. https://doi.org/10.1016/j.cjca.2024.01.005

13. Liu C., Wong P.Y., Chow S.K.H., Cheung W.H., Wong R.M.Y. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J. Orthop. Transl. 2023;38:76–83. https://doi.org/10.1016/j.jot.2022.10.001

14. Rahmati M., Shariatzadeh Joneydi M., Koyanagi A., Yang G., Ji B., Won Lee S., et al. Resistance training restores skeletal muscle atrophy and satellite cell content in an animal model of Alzheimer’s disease. Sci. Rep. 2023;13(1): 2535. https://doi.org/10.1038/s41598-023-29406-1

15. Shalaby M.N., Fadl M.A. Relative indicators and predicative ability of some biological variables on cardiac neural activity for volleyball players. Syst. Rev. Pharm. 2020;11(9):834–840. https://doi.org/10.31838/srp.2020.9.119

16. Shalaby M.N., Hussien Sh., Sakoury M.M.A., Atiaa M.A.M., Antar G.M.A. The Impact of Antioxidants in Blood Pressure and Free Radicals of Athletes. Indian J. Forensic Med. Toxicol. 2021;15(2):4420–4430. https://doi.org/10.37506/ijfmt.v15i2.15062

17. Bangsbo J., Blackwell J., Boraxbekk C.J., Caserotti P., Dela F., Evans A.B., et al. Copenhagen Consensus statement 2019: Physical activity and ageing. Br. J. Sports Med. 2019;53(14):856–858. https://doi.org/10.1136/bjsports-2018-100451

18. Cho S.Y., Roh H.T. Effects of Exercise Training on Neurotrophic Factors and Blood–Brain Barrier Permeability in Young-Old and Old-Old Women. Int. J. Environ. Res. Public Health. 2022;19(24):16896. https://doi.org/10.3390/ijerph192416896

19. Moghaddam M.H.B., Aghdam F.B., Jafarabadi M.A., Allahverdipour H., Nikookheslat S.D., Safarpour S. The Iranian version of International Physical Activity Questionnaire (IPAQ) in Iran: Content and construct validity, factor structure, internal consistency and stability. World Appl. Sci. J. 2012;18(8):1073–1080. https://doi.org/10.5829/idosi.wasj.2012.18.08.754

20. Amanat S., Sinaei E., Panji M., Mohammadpor Hodki R., Bagheri-Hosseinabadi Z., Asadimehr H., Fararouei M., Dianatinasab A. A Randomized Controlled Trial on the Effects of 12 Weeks of Aerobic, Resistance, and Combined Exercises Training on the Serum Levels of Nesfatin-1, Irisin-1 and HOMA-IR. Front. Physiol. 2020;11: 562895. https://doi.org/10.3389/fphys.2020.562895

21. Brzycki M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Danc. 1993;64(1):88–90. https://doi.org/10.1080/07303084.1993.10606684

22. Tanaka H., Monahan K.D., Seals D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001;37(1):153–156. https://doi.org/10.1016/S0735-1097(00)01054-8

23. Arazi H., Khanmohammadi A., Asadi A., Haff G.G. The effect of resistance training set configuration on strength, power, and hormonal adaptation in female volleyball players. Appl. Physiol. Nutr. Metab. 2018;43(2):154–164. https://doi.org/10.1139/apnm-2017-0327

24. Nunes P.R.P., Barcelos L.C., Oliveira A.A., Furlanetto R. Jr, Martins F.M., Resende E.A.M.R., Orsatti F.L. Muscular Strength Adaptations and Hormonal Responses After Two Different Multiple-Set Protocols of Resistance Training in Postmenopausal Women. J. Strength Cond. Res. 2019;33(5):1276–1285. https://doi.org/10.1519/JSC.0000000000001788

25. Chen H.T., Chung Y.C., Chen Y.J., Ho S.Y., Wu H.J. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J. Am. Geriatr. Soc. 2017;65(4):827–832. https://doi.org/10.1111/jgs.14722

26. Li B., Feng L., Wu X., Cai M., Yu J.J., Tian Z. Effects of different modes of exercise on skeletal muscle mass and function and IGF-1 signaling during early aging in mice. J. Exp. Biol. 2022;225(21): jeb244650. https://doi.org/10.1242/jeb.244650

27. Son W.M., Pekas E.J., Park S.Y. Twelve weeks of resistance band exercise training improves age-associated hormonal decline, blood pressure, and body composition in postmenopausal women with stage 1 hypertension: a randomized clinical trial. Menopause. 2020;27(2):199–207. https://doi.org/10.1097/GME.0000000000001444

28. Stein A.M., da Silva T.M.V., Coelho F.G.M, Rueda A.V., Camarini R., Galduróz R.F.S. Acute exercise increases circulating IGF-1 in Alzheimer’s disease patients, but not in older adults without dementia. Behav. Brain Res. 2020;396:112903. https://doi.org/10.1016/j.bbr.2020.112903

29. Pierce J.R., Martin B.J., Rarick K.R., Alemany J.A., Staab J.S., Kraemer W.J., Hymer W.C., Nindl B.C. Growth Hormone and Insulin-like Growth Factor-I Molecular Weight Isoform Responses to Resistance Exercise Are Sex-Dependent. Front. Endocrinol. (Lausanne). 2020;11:571. https://doi.org/10.3389/fendo.2020.00571

30. Voss M.W., Nagamatsu L.S., Liu-Ambrose T., Kramer A.F. Exercise, brain, and cognition across the life span. J. Appl. Physiol. 2011;111(5):1505–1513. https://doi.org/10.1152/japplphysiol.00210.2011

31. Xu L., Liu R., Qin Y., Wang T. Brain metabolism in Alzheimer’s disease: biological mechanisms of exercise. Transl. Neurodegener. 2023;12(1):33. https://doi.org/10.1186/s40035-023-00364-y

32. Toledo I.C.A. Clinical, cellular and molecular approaches to oxidative stress in athletes’ bodies: a systematic and integrative review. Int. J. Nutrology. 2023;16(1). https://doi.org/10.54448/ijn23106

33. Lindsay R.T., Rhodes C.J. Reactive Oxygen Species (ROS) in Metabolic Disease-Don’t Shoot the Metabolic Messenger. Int. J. Mol. Sci. 2025;26(6):2622. https://doi.org/10.3390/ijms26062622

34. Prabowo S.A., Wibawa J.C., Hamdani H., Indriarsa N., Ardha M.A.A., Hidayat T., Subagio I., Barata I., Lobo J., Ayubi N. Increased adenosine monophosphate–activated protein kinase activity in mice with physical exercise intervention: a systematic review. Retos. 2024;68:377–387. https://doi.org/10.47197/retos.v68.115136

35. Bao C., Yang Z., Li Q., Cai Q., Li H., Shu B. Aerobic Endurance Exercise Ameliorates Renal Vascular Sclerosis in Aged Mice by Regulating PI3K/AKT/mTOR Signaling Pathway. DNA Cell Biol. 2020;39(2):310–320. https://doi.org/10.1089/dna.2019.4966

36. Ayubi N., Wibawa J.C., Aljunaid M., Dafun P.B., Ming J.W. The Role of Insulin-Like Growth Factor (IGF-1) Signaling During Physical Exercise: A Systematic Review. Al-Kindy Coll. Med. J. 2024;20(3):163–167. https://doi.org/10.47723/frgdrz94

37. Ahmad S.S., Ahmad K., Lee E.J., Lee Y.H., Choi I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells. 2020;9(8):1773. https://doi.org/10.3390/cells9081773

38. Yoshida T., Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells. 2020;9(9):1970. https://doi.org/10.3390/cells9091970

39. Zhang J., Zhang W. Can irisin be a linker between physical activity and brain function? Biomol. Concepts. 2016;7(4):253–258. https://doi.org/10.1515/bmc-2016-0012

40. Tiano J.P., Springer D.A., Rane S.G. SMAD3 negatively regulates serum irisin and skeletal muscle FNDC5 and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) during exercise. J. Biol. Chem. 2015;290(12):7671–7684. https://doi.org/10.1074/jbc.M114.617399

41. Wrann C.D., White J.P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., Lin J.D., Greenberg M.E., Spiegelman B.M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–659. https://doi.org/10.1016/j.cmet.2013.09.008

42. Zuo C., Yin Y., Zheng Z., Mu R., Liang Y., Wang S., Ye C. Unlocking the full potential of resistance training: a comparative analysis of low- and high-intensity effects on neurotrophic growth factors and homocysteine. Discov. Appl. Sci. 2025;7(2):108. https://doi.org/10.1007/s42452-025-06521-4

43. Mcleod J.C., Currier B.S., Lowisz C.V., Phillips S.M. The influence of resistance exercise training prescription variables on skeletal muscle mass, strength, and physical function in healthy adults: An umbrella review. J. Sport Heal. Sci. 2024;13(1):47–60. https://doi.org/10.1016/j.jshs.2023.06.005

44. van Vossel K., Hardeel J., van der Stede T., Cools T., Vandecauter J., Vanhaecke L., Boone J., Blemker S.S., Lievens E., Derave W. Evidence for Simultaneous Muscle Atrophy and Hypertrophy in Response to Resistance Training in Humans. Med. Sci. Sports Exerc. 2024;56(9):1634–1643. https://doi.org/10.1249/MSS.0000000000003475

45. Ding Q., Vaynman S., Akhavan M., Ying Z., Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. 2006;140(3):823–833. https://doi.org/10.1016/j.neuroscience.2006.02.084

46. Chen Y., Wang J., Li S., Li Y. Acute effects of low load resistance training with blood flow restriction on serum growth hormone, insulin-like growth factor-1, and testosterone in patients with mild to moderate unilateral knee osteoarthritis. Heliyon. 2022;8(10):e11051. https://doi.org/10.1016/j.heliyon.2022.e11051

47. Patterson S.D., Leggate M., Nimmo M.A., Ferguson R.A. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur. J. Appl. Physiol. 2013;113(3):713–719. https://doi.org/10.1007/s00421-012-2479-5

48. Nakamura Y., Aizawa K., Imai T., Kono I., Mesaki N. Hormonal responses to resistance exercise during different menstrual cycle states. Med. Sci. Sports Exerc. 2011;43(6):967–973. https://doi.org/10.1249/MSS.0b013e3182019774

49. Someya Y., Tamura Y., Kaga H., Nojiri S., Shimada K., Daida H., et al. Skeletal muscle function and need for long-term care of urban elderly people in Japan (the Bunkyo Health Study): A prospective cohort study. BMJ Open. 2019;9(9):e031584. https://doi.org/10.1136/bmjopen-2019-031584


Review

For citations:


Ayubi N., Wibawa J.C., Sceisarriya V.M., Dafun Jr. P.B. Resistance training significantly increases insulin-like growth factor-1 levels in women with a sedentary lifestyle: A randomized controlled trial. Sports medicine: research and practice. 2025;15(3):34-43. https://doi.org/10.47529/2223-2524.2025.3.7

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)