Preview

Спортивная медицина: наука и практика

Расширенный поиск

Нутритивная поддержка в спорте: Часть I. Роль макронутриентов в повышении выносливости спортсменов (обзор зарубежной литературы)

https://doi.org/10.47529/2223-2524.2020.3.18

Полный текст:

Аннотация

Сбалансированный рацион питания и обоснованное включение в него специализированных пищевых продуктов играют ключевую роль в расширении адаптационного потенциала атлетов и влияют на эффективность тренировочного процесса. В обзоре рассматриваются современные научные данные, касающиеся потребностей спортсменов в пищевых веществах и энергии, для увеличения выносливости. Приводится сравнительная характеристика различных источников белка, углеводов, характеризуется значение жиров в спортивной практике, а также эффективность применения комбинаций различных макронутриентов при интенсивных физических нагрузках.

Об авторах

М. М. Коростелева
ФГАНУ «Всероссийский научно-исследовательский институт молочной промышленности»
Россия

Коростелева Маргарита Михайловна, кандидат медицинских наук, старший научный сотрудник 

109240, Москва, Устьинский проезд, 2/14



И. В. Кобелькова
ФГБУН «Федеральный исследовательский центр питания, биотехнологии и безопасности пищи»
Россия

Кобелькова Ирина Витальевна, кандидат медицинских наук, ведущий научный сотрудник лаборатории спортивной антропологии и нутрициологии 

109240, Москва, Устьинский проезд, 2/14



Р. А. Ханферьян
ФГАОУ ВО «Российский университет дружбы народов»
Россия

Ханферьян Роман Авакович, профессор, доктор медицинских наук, профессор кафедры иммунологии и аллергологии 

117198, Москва, ул. Миклухо-Маклая, 6.



Список литературы

1. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Am Diet Assoc. 2000;100(12):1543–1556. https://doi.org/10.1016/S0002-8223(00)00428-4

2. Stellingwerff T., Maughan R.J., Burke L.M. Nutrition for Power Sports: Middle-Distance Running, Track Cycling, Rowing, Canoeing/Kayaking, and Swimming. J Sports Sci. 2011;29(1):S79–S89. https://doi.org/10.1080/02640414.2011.589469

3. Holway F.E., Spriet L.L. Sport-specific Nutrition: Practical Strategies for Team Sports. J Sports Sci. 2011;29(1):S115–S125. https://doi.org/10.1080/02640414.2011.605459

4. Tiller N.B., Roberts J.D., Beasley L., Chapman S., Pinto J.M., Smith L., et al. International Society of Sports Nutrition Position Stand: nutritional considerations for single-stage ultra-marathon training and racing. J Int Soc Sports Nutr. 2019;16(1):50. https://doi.org/10.1186/s12970-019-0312-9

5. Thomas D.T., Erdman K.A., Burke L.M. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–528. https://doi.org/10.1016/j.jand.2015.12.006

6. Kato H., Suzuki K., Bannai M., Moore D.R. Protein requirements are elevated in endurance athletes after exercise as determined by the Indicator amino acid oxidation method. PLoS One. 2016;11(6):e0157406. https://doi.org/10.1371/journal.pone.0157406

7. Phillips S.M. Protein requirements and supplementation in strength sports. Nutrition. 2004;20(7–8):689–695. https://doi.org/10.1016/j.nut.2004.04.009

8. Phillips S.M., Van Loon L.J. Dietary protein for athletes: from requirements to optimum adaptation. J.Sports Sci. 2011;29(1): S29–S38. https://doi.org/10.1080/02640414.2011.619204

9. Phillips S.M. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. 2012;108(S2):S158–S167. https://doi.org/10.1017/s0007114512002516

10. Burd N.A., West D.W., Moore D.R., Atherton P.J., Staples A.W., Prior T., et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568–573. https://doi.org/10.3945/jn.110.135038

11. Jäger R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 2017;14(1):20. https://doi.org/10.1186/s12970-017-0177-8

12. Antonio J., Ellerbroek A., Silver T., Orris S., Scheiner M., Gonzalez A., Peacock C.A. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women—a follow-up investigation. J Int Soc Sports Nutr. 2015;12(1):39. https://doi.org/10.1186/s12970-015-0100-0

13. Antonio J., Ellerbroek A., Silver T., Vargas L., Tamayo A., Buehn R., Peacock C.A. A high protein diet has no harmful effects: a one-year crossover study in resistance-trained males. J Nutr Metab. 2016;2016:9104792. https://doi.org/10.1155/2016/9104792

14. Wolfe R.R., Cifelli A.M., Kostas G., Kim Il-Young. Optimizing protein intake in adults: interpretation and application of the recommended dietary allowance compared with the acceptable macronutrient distribution range. Adv Nutr. 2017;8(2):266–275. https://doi.org/10.3945/an.116.013821

15. Cribb P.J., Williams A.D., Stathis C.G., Carey M.F., Hayes A. Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 2007;39(2):298–307. https://doi.org/10.1249/01.mss.0000247002.32589.ef

16. Kukuljan S., Nowson C.A., Sanders K., Daly R.M. Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men: an 18-mo randomized controlled trial. J Appl Physiol (1985). 2009;107(6): 1864–1873. https://doi.org/10.1152/japplphysiol.00392.2009

17. Hulmi J.J., Kovanen V., Selanne H., Kraemer W.J., Hakkinen K., Mero A.A. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids. 2009;37(2):297–308. https://doi.org/10.1007/s00726-008-0150-6

18. Josse A.R., Tang J.E., Tarnopolsky M.A., Tarno¬polsky M.A., Phillips S.M. Body composition and strength changes in women with milk and resistance exercise. Med Sci Sports Exerc. 2010;42(6):1122–1130. https://doi.org/10.1249/MSS.0b013e3181c854f6

19. Andersen L.L., Tufekovic G., Zebis M.K., Crameri R.M., Verlaan G., Kjaer M., et al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism. 2005;54(2):151–156. https://doi.org/10.1016/j.metabol.2004.07.012

20. Cermak N.M., Res P.T., De Groot L.C., Saris W.M.H., van Loon L.J.C. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–1464. https://doi.org/10.3945/ajcn.112.037556

21. Phillips S.M. The science of muscle hypertrophy: making dietary protein count. Proc Nutr Soc. 2011;70(1):100–103. https://doi.org/10.1017/S002966511000399X

22. Pasiakos S.M., Mclellan T.M., Lieberman H.R. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med. 2015;45(1):111–131. https://doi.org/10.1007/s40279-014-0242-2

23. Kreider R.B., Serra M., Beavers K.M., Moreillon J., Kresta J.Y., Byrd M., et al. A structured diet and exercise program promotes favorable changes in weight loss, body composition, and weight maintenance. J Am Diet Assoc. 2011;111(6):828–843. https://doi.org/10.1016/j.jada.2011.03.013

24. Kerksick C., Thomas A., Campbell B., Taylor L., Wilborn C., Marcello B., et al. Effects of a popular exercise and weight loss program on weight loss, body composition, energy expenditure and health in obese women. Nutr Metab (Lond). 2009;6:23. https://doi.org/10.1186/1743-7075-6-23

25. Bosse J.D., Dixon B.M. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories. J Int Soc Sports Nutr. 2012;9(1):42. https://doi.org/10.1186/1550-2783-9-42

26. Tipton K.D. Role of protein and hydrolysates before exercise. Int J Sport Nutr Exerc Metab. 2007;17(S1):S77–S86. https://doi.org/10.1123/ijsnem.17.s1.s77

27. Macnaughton L.S., Wardle S.L., Witard O.C., McGlory C., Hamilton D.L., Jeromson S., et al. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol Rep. 2016;4(15):e12893. https://doi.org/10.14814/phy2.12893

28. Tang J.E., Moore D.R., Kujbida G.W., Tarnopolsky M.A., Phillips S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107(3):987–992. https://doi.org/10.1152/japplphysiol.00076.2009

29. Lemon P.W. Beyond the zone: protein needs of active individuals. J Am Coll Nutr. 2000;19(5):513S–521S. https://doi.org/10.1080/07315724.2000.10718974

30. Katsanos C.S., Chinkes D.L., Paddon-Jones D., Zhang X.J., Aarsland A., Wolfe R.R. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res. 2008;28(10):651–658. https://doi.org/10.1016/j.nutres.2008.06.007

31. West D.W., Burd N.A., Coffey V.G., Baker S. K., Burke L.M., Hawley J. A., et al. Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr. 2011;94(3):795–803. https://doi.org/10.3945/ajcn.111.013722

32. Paul G.L. The rationale for consuming protein blends in sports nutrition. J Am Coll Nutr. 2009;28(4):464S–472S. https://doi.org/10.1080/07315724.2009.10718113

33. Kerksick C.M., Rasmussen C.J., Lancaster S.L., Magu B., Smith P., Melton C., et al. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006;20(3):643–653. https://doi.org/10.1519/R-17695.1

34. Reidy P.T., Walker D.K., Dickinson J.M., Gundermann D.M., DrummondM.J., Timmerman K.L., et al. Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. J Nutr. 2013;143(4):410–416. https://doi.org/10.3945/jn.112.168021

35. Cockburn E., Stevenson E., Hayes P.R., Robson-Ansley P., Howatson G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl Physiol Nutr Metab. 2010;35(3):270–277. https://doi.org/10.1139/H10-017

36. Wojcik J.R., Walber-Rankin J., Smith L.L., Gwazdauskas F.C. Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. Int J Sport Nutr Exerc Metab. 2001;11(4):406–419. https://doi.org/10.1123/ijsnem.11.4.406

37. Hartman J.W., Tang J.E., Wilkinson S.B., Tarnopolsky M.A., Lawrence R.L., Fullerton A.V., et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr. 2007;86(2):373–381. https://doi.org/10.1093/ajcn/86.2.373

38. Norton L., Wilson G.J. Optimal protein intake to maximize muscle protein synthesis. Agro Food Industry Hi-Tech. 2009;20:54–57.

39. Rennie MJ, Bohe J, Wolfe RR. Latency, duration and dose response relationships of amino acid effects on human muscle protein synthesis. J Nutr. 2002;132:3225S–3227S.

40. Burd N.A., Yang Y., Moore D.R., Tang J.E., Tarnopolsky M.A., Phillips S.M. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. Micellar casein at rest and after resistance exercise in elderly men. Br J Nutr. 2012;108(6):958–962. https://doi.org/10.1017/S0007114511006271

41. Coffey V.G., Moore D.R., Burd N.A., Rerecich T., Stellingwerff T., Garnham A.P., et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111(7):1473–1483. https://doi.org/10.1007/s00421-010-1768-0

42. Paddon-Jones D., Sheffield-Moore M., Aarsland A., Wolfe R.R., Ferrando A.A. Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab. 2005;288(4):E761–E767. https://doi.org/10.1152/ajpendo.00291.2004

43. Bohe J., Low J.F., Wolfe R.R., Rennie M.J. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001;532(2):575–579. https://doi.org/10.1111/j.1469-7793.2001.0575f.x

44. Atherton P.J., Etheridge T., Watt P.W., Wilkinson D., Selby A., Rankin D., et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mtorc1 signaling. Am J Clin Nutr. 2010;92(5):1080–1088. https://doi.org/10.3945/ajcn.2010.29819

45. Katsanos C.S., Chinkes D.L., Paddon-Jones D., Zhang X.J., Aarsland A., Wolfe R.R. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res. 2008;28(10):651–658. https://doi.org/10.1016/j.nutres.2008.06.007

46. Phillips S.M., Tipton K.D., Aarsland A., Wolf S.E., Wolf R.R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys. 1997;273(1 Pt 1):E99–107. 10.1152/ajpendo.1997.273.1.E99

47. Borsheim E., Tipton K.D., Wolf S.E., Wolfe R.R. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002;283(4):E648–E657. https://doi.org/10.1152/ajpendo.00466.2001

48. Paddon-Jones D., Sheffield-Moore M., Aarsland A., Wolfe R.R., Ferrando A.A. Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab. 2005;288(4):E761–E767. https://doi.org/10.1152/ajpendo.00291.2004

49. Howarth K.R., Moreau N.A., Phillips S.M., Gibala M.J. Coingestion Of Protein With Carbohydrate During Recovery From Endurance Exercise Stimulates Skeletal Muscle Protein Synthesis In Humans. J Appl Physiol (1985). 2009;106(4):1394–1402. https://doi.org/10.1152/japplphysiol.90333.2008

50. Van Loon L., Saris W.H., Kruijshoop M., Wagenma¬kers A.J. Maximizing Postexercise Muscle Glycogen Synthesis: Carbohydrate Supplementation And The Application Of Amino Acid Or Protein Hydrolysate Mixtures. Am J Clin Nutr. 2000;72(1):106–111. https://doi.org/10.1093/ajcn/72.1.106

51. Jentjens R., Jeukendrup A. Determinants Of Post-Exercise Glycogen Synthesis During Short-Term Recovery. Sports Med. 2003;33(2):117–144. https://doi.org/10.2165/00007256-200333020-00004

52. Cermak N.M., van Loon L.J.C. The Use of Carbohydrates During Exercise as an Ergogenic Aid. Sports Med. 2013;43(11):1139–1155. https://doi.org/10.1007/s40279-013-0079-0

53. Fuchs C.J., Gonzalez J.T., van Loon L.J.C. Fructose Co-Ingestion to Increase Carbohydrate Availability in Athletes. J Physiol. 2019;597(14):3549–3560. https://doi.org/10.1113/JP277116

54. Gonzalez J.T., Betts J.A. Dietary Sugars, Exercise and Hepatic Carbohydrate Metabolism. Proc Nutr Soc. 2019 May;78(2):246–256. https://doi.org/10.1017/S0029665118002604

55. Gonzalez J.T., Fuchs C.J., Betts J.A., van Loon L.J.C. Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater Than the Sum of Its Parts? Nutrients. 2017;9(4):344. https://doi.org/10.3390/nu9040344

56. Alghannam A.F., Gonzalez J.T., Betts J.A. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients. 2018;10(2):253. https://doi.org/10.3390/nu10020253

57. Mclellan T.M., Pasiakos S.M., Lieberman H.R. Effects Of Protein In Combination With Carbohydrate Supplements On Acute Or Repeat Endurance Exercise Performance: A Systematic Review. Sports Med. 2014;44(4):535–550. https://doi.org/10.1007/s40279-013-0133-y

58. Rustad P.L., Sailer M., Cumming K.T., Jeppesen P.B., Kolnes K.J., Sollie O., et al. Intake Of Protein Plus Carbohydrate During The First Two Hours After Exhaustive Cycling Improves Performance The Following Day. PLoSOne. 2016;11(4):E0153229. https://doi.org/10.1371/journal.pone.0153229. eCollection 2016

59. Bird S.P., Mabon T., Pryde M., Feebrey S., Cannon J. Triphasic Multinutrient Supplementation During Acute Resistance Exercise Improves Session Volume Load And Reduces Muscle Damage In Strength-Trained Athletes. Nutr Res. 2013;33(5):376–387. https://doi.org/10.1016/j.nutres.2013.03.002

60. Bird S.P., Tarpenning K.M., Marino F.E. Independent And Combined Effects Of Liquid Carbohydrate/Essential Amino Acid Ingestion On Hormonal And Muscular Adaptations Following Resistance Training In Untrained Men. Eur J Appl Physiol. 2006;97(2):225–238. https://doi.org/10.1007/s00421-005-0127-z

61. Abdulla H., Smith K., Atherton P.J., Idris I. Role Of Insulin In The Regulation Of Human Skeletal Muscle Protein Synthesis And Breakdown: A Systematic Review And Meta-Analysis. Diabetologia. 2016;59(1):44–55. https://doi.org/10.1007/s00125-015-3751-0

62. Kinsey A.W., Ormsbee M.J. The Health Impact Of Nighttime Eating: Old And New Perspectives. Nutrients. 2015;7(4):2648–2662. https://doi.org/10.3390/nu7042648

63. Res P., Groen B., Pennings B., Beelen M., Wallis G.A., Gijsen A.P., et al. Protein Ingestion Before Sleep Improves Postexercise Overnight Recovery. Med Sci Sports Exerc. 2012;44(8):1560–1569. https://doi.org/10.1249/MSS.0b013e31824cc363

64. Phinney S.D., Bistrian B.R., Evans W.J., Gervino E., Blackburn G.L. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32(8):769–76. https://doi.org/10.1016/0026-0495(83)90106-3

65. Cox P.J., Kirk T., Ashmore T., Willerton K., Evans R., Smith A., et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24(2):256–268. https://doi.org/10.1016/j.cmet.2016.07.010

66. Volek J.S., Freidenreich D.J., Saenz C., Kunces L.J., Creighton B.C., Bartley J.M., et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65(3):100–110. https://doi.org/10.1016/j.metabol.2015.10.028

67. Wang Y., Liu Z., Han Y., Xu J., Huang W., Li Z. Medium chain triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. PLoSOne. 2018;13(2):e0191182. https://doi.org/10.1371/journal.pone.0191182

68. Cox P.J., Clarke K. Acute nutritional ketosis: implications for exercise performance and metabolism. Extrem Physiol Med. 2014;3:17. https://doi.org/10.1186/2046-7648-3-17


Для цитирования:


Коростелева М.М., Кобелькова И.В., Ханферьян Р.А. Нутритивная поддержка в спорте: Часть I. Роль макронутриентов в повышении выносливости спортсменов (обзор зарубежной литературы). Спортивная медицина: наука и практика. 2020;10(3):18-26. https://doi.org/10.47529/2223-2524.2020.3.18

For citation:


Korosteleva M.M., Kobel’kova I.V., Khanferyan R.A. Nutritional support in sports: Part I. The role of macronutrients in increasing of endurance of athletes (review of foreign literature). Sports medicine: research and practice. 2020;10(3):18-26. (In Russ.) https://doi.org/10.47529/2223-2524.2020.3.18

Просмотров: 138


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)