Значение физической активности в регуляции противовирусного иммунитета
Аннотация
Обзор литературы посвящен современным данным о влиянии и роли физической активности различной интенсивности в профилактике инфицирования различными респираторными вирусами, гриппом и коронавирусом SARS-CoV-2. Обсуждаются различия по влиянию физической активности различной интенсивности на состояние противовирусного иммунитета, клеточный и цитокиновый ответ при инфицировании респираторными вирусами, влияние физической активности на эффективность вакцинации и роль регулярной физической активности умеренной интенсивности в профилактике инфицирования вирусами у больных с ожирением, избыточной массой тела, диабетом и другими метаболическими нарушениями. Приводятся литературные данные о роли физической активности в профилактике SARS-CoV-2 вирусной инфекции, а также в условиях самоизоляции и карантина.
Об авторах
Р. А. ХанферьянРоссия
Ханферьян Роман Авакович, профессор, доктор медицинских наук, профессор кафедры иммунологии и аллергологии
117198, Москва, ул. Миклухо-Маклая, 6.
И. А. Радыш
Россия
Радыш Иван Васильевич, доктор медицинских наук, зав. кафедрой управления сестринской деятельности медицинского института
117198, Москва, ул. Миклухо-Маклая, 6.
В. В. Суровцев
Россия
Суровцев Виктор Васильевич, зам. директора медицинского института по инновационной работе
117198, Москва, ул. Миклухо-Маклая, 6.
М. М. Коростелева
Россия
Коростелева Маргарита Михайловна, кандидат медицинских наук, старший научный сотрудник
109240, Москва, Устьинский проезд, 2/14
И. В. Алешина
Россия
Алешина Ирина Владимировна, научный сотрудник
109240, Москва, Устьинский пр., 2/14
Список литературы
1. Nieman D.C., Wentz L.M. The compelling link between physical activity and the body’s defense system. J Sport Health Sci. 2019;8(3):201–217. https://doi.org/10.1016/j.jshs.2018.09.009
2. Кулененков О.С. Фармакология спорта в таблицах и схемах. 2–е изд. М.: Спорт; 2015. 176 с.
3. Baetjer A. The effect of muscular fatigue upon resistance. Physiol Rev. 1932;12(3):453–468. https://doi.org/10.1152/physrev.1932.12.3.453
4. Horstmann D.M. Acute poliomyelitis: relation of physical activity at the time of onset to the course of the disease. JAMA. 1950;142(4):236–241. https://doi.org/10.1001/jama.1950.02910220016004
5. Levinson S.O., Milzer A., Lewin P. Effect of fatigue, chilling and mechanical trauma on resistance to experimental poliomyelitis. Am J Hygiene 1945;42(2):204–213. https://doi.org/10.1093/oxfordjournals.aje.a119037
6. Weinstein L. Poliomyelitis: a persistent problem. N Engl J Med 1973;288(7):370–372. https://doi.org/10.1056/nejm197302152880714
7. Reyes M.P., Lerner A.M. Interferon and neutralizing antibody in sera of exercised mice with Coxsackievirus B–3 myocarditis. Exp Bio Med 1976;151(2):333–338. https://doi.org/10.3181/00379727-151-39204
8. Ilbäck N.G., Friman G., Beisel W.R., Johnson A.J., Berendt R.F. Modifying effects of exercise on clinical course and biochemical response of the myocardium in influenza and tularemia in mice. Infect Immun 1984;45(2):498–504. https://doi.org/10.1128/iai.45.2.498–504.1984
9. Davis J.M., Murphy E.A., McClellan J.L., Carmichael M.D., Gangemi J.D. Quercetin reduces susceptibility to influenza infection following stressful exercise. Am J Physiol Regul Integr Comp Physiol 2008;295(2):R505–R509. https://doi.org/10.1152/ajpregu.90319.2008
10. Murphy E.A., Davis J.M., Carmichael M.D., Gangemi J.D., Ghaffar A., Mayer E.P. Exercise stress increases susceptibility to influenza infection. Brain Behav Immun 2008;22(8):1152–155. https://doi.org/10.1016/j.bbi.2008.06.004
11. Murphy E.A., Davis J.M., Brown A.S., Carmichael M.D., Carson J.A., Van Rooijen N., et al. Benefits of oat beta–glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol 2008;294(5):R1593–R1599. https://doi.org/10.1152/ajpregu.00562.2007
12. Shi Y., Shi H., Nieman D.C., Hu Q., Yang L., Liu T., et al. Lactic acid accumulation during exhaustive exercise impairs release of neutrophil extracellular traps in mice. Front Physiol. 2019;10:709. https://doi.org/10.3389/fphys.2019.00709
13. Chao C.C., Strgar F., Tsang M., Peterson P.K. Effects of swimming exercise on the pathogenesis of acute murine Toxoplasma gondii Me49 infection. Clin Immunol Immunopathol. 1992;62(2):220–226. https://doi.org/10.1016/0090-1229(92)90075-y
14. Davis J.M., Kohut M.L., Colbert L.H., Jackson D.A., Ghaffar A., Mayer E.P. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol. 1997;83(5):1461–1466. https://doi.org/10.1152/jappl.1997.83.5.1461
15. Ceddia M.A., Voss E.W., Woods J.A. Intracellular mechanisms responsible for exerciseinduced suppression of macrophage antigen presentation. J Appl Physiol. 2000;88(2):804–810.https://doi.org/10.1152/jappl.2000.88.2.804
16. Woods J.A., Ceddia M.A., Kozak C., Wolters B.W. Effects of exercise on the macrophage MHC II response to inflammation. Int J Sports Med. 1997;18(6):483–488. https://doi.org/10.1055/s-2007-972668
17. Frellstedt L., Waldschmidt I., Gosset P., Desmet C., Pirottin D., Bureau F., et al. Training modifies innate immune responses in blood monocytes and in pulmonary alveolar macrophages. Am J Respir Cell Mol Biol. 2014;51(1):135–142. https://doi.org/10.1165/rcmb.2013-0341oc
18. Kohut M.L., Boehm G.W., Moynihan J.A. Prolonged exercise suppresses antigen-specific cytokine response to upper respiratory infection. J Appl Physiol. 2001;90(2):678–84. https://doi.org/10.1152/jappl.2001.90.2.678
19. Ceddia M.A., Woods J.A. Exercise suppresses macrophage antigen presentation. J Appl Physiol. 1999;87(6):2253–2258. https://doi.org/10.1152/jappl.1999.87.6.2253
20. Baron R.C., Hatch M.H., Kleeman K., MacCormack J.N. Aseptic meningitis among members of a high school football team. JAMA. 1982;248(14):1724–1727. https://doi.org/10.1001/jama.1982.03330140034028
21. Roberts J.A. Loss of form in young athletes due to viral infection. BMJ. 1985;290(6465):357–358. https://doi.org/10.1136/bmj.290.6465.357
22. Roberts J.A. Viral illnesses and sports performance. Sports Med 1986;3(4):298–303. https://doi.org/10.2165/00007256-198603040-00006
23. Sharp J.C.M. Viruses and the athlete. Br J Sports Med 1989;23(1):47–48. https://doi.org/10.1136/bjsm.23.1.47
24. Folsom R.W., Littlefield-Chabaud M.A., French D.D., Pourciau S.S., Mistric L., Horohov D.W. Exercise alters the immune response to equine influenza virus and increases susceptibility to infection. Equine Vet J. 2001;33(7):664–669. https://doi.org/10.2746/042516401776249417
25. Parker S., Brukner P., Rosier M. Chronic fatigue syndrome and the athlete. Sports Med Train Rehab. 1996;6(4):269–278. https://doi.org/10.1080/15438629609512057
26. Sanchez J.L., Cooper M.J., Myers C.A., Cummings J.F., Vest K.G., Russell K.L., et al. Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev 2015;28(3):743–800. https://doi.org/10.1128/cmr.00039–14
27. Porsolt R.D., Le Pichon M., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266 (5604):730–732. https://doi.org/10.1038/266730a0
28. Рылова М.Л. Методы исследования хронического действия вредных факторов в эксперименте. Л.: Медицина; 1964. 148 с.
29. Каркищенко Н.Н., Уйба В.В., Каркищенко В.Н., Шустов Е.Б. Очерки спортивной фармакологии. Т. 1. Векторы экстраполяции. М., СПб.: Айсинг; 2013. 288 с.
30. Dawson C., Horvath S. Swimming in small laboratory animals. Med Sci Sports. 1970;2(2):51–78. https://doi.org/10.1249/00005768-197000220-00002
31. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820. https://doi.org/10.1056/nejmoa1211721
32. Zimmer P., Schenk A., Kieven M., Holthaus M., Lehmann J., Lövenich L., Bloch W. Exercise induced alterations in NK-cell cytotoxicity-methodological issues and future perspectives. Exerc Immunol Rev. 2017; 23: 66–81.
33. Davis J.M., Murphy E.A., McClellan J.L., Carmichael M.D., Gangemi J.D. Quercetin reduces susceptibility to influenza infection following stressful exercise. Am J Physiol Regul Integr Comp Physiol. 2008;295(2):R505–R509. https://doi.org/10.1152/ajpregu.90319.2008
34. Murphy E.A., Davis J.M., Carmichael M.D., Gangemi J.D., Ghaffar A., Mayer E.P. Exercise stress increases susceptibility to influenza infection. Brain Behav Immun. 2008;22(8):1152–1155. https://doi.org/10.1016/j.bbi.2008.06.004
35. Murphy E.A., Davis J.M., Brown A.S., Carmichael M.D., Carson J.A., Van Rooijen N., et al. Benefits of oat beta–glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol 2008;294(5):R1593–R1599. https://doi.org/10.1152/ajpregu.00562.2007
36. Shi Y., Shi H., Nieman D.C., Hu Q., Yang L., Liu T., et al. Lactic acid accumulation during exhaustive exercise impairs release of neutrophil extracellular traps in mice. Front Physiol. 2019;10:709. https://doi.org/ 10.3389/fphys.2019.00709
37. Chao C.C., Strgar F., Tsang M., Peterson P.K. Effects of swimming exercise on the pathogenesis of acute murine Toxoplasma gondii Me49 infection. Clin Immunol Immunopathol. 1992;62(2):220–226. https://doi.org/10.1016/0090-1229(92)90075-y
38. Davis J.M., Kohut M.L., Colbert L.H., Jackson D.A., Ghaffar A., Mayer E.P. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol. 1997;83(5):1461–1466. https://doi.org/10.1152/jappl.1997.83.5.1461
39. Ceddia M.A., Voss E.W. Jr, Woods J.A. Intracellular mechanisms responsible for exerciseinduced suppression of macrophage antigen presentation. J Appl Physiol. 2000;88(2):804–810. https://doi.org/10.1152/jappl.2000.88.2.804
40. Woods JA, Ceddia MA, Kozak C, Wolters BW. Effects of exercise on the macrophage MHC II response to inflammation. Int J Sports Med 1997;18:483–488.
41. Murphy E.A., Davis J.M., Brown A.S., Carmichael M.D., Van Rooijen N., Ghaffar A., et al. Role of lung macrophages on susceptibility to respiratory infection following short-term moderate exercise training. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1354–R1358. https://doi.org/10.1152/ajpregu.00274.2004
42. Frellstedt L, Waldschmidt I, Gosset P, Desmet C, Pirottin D, Bureau F, et al. Training modifies innate immune responses in blood monocytes and in pulmonary alveolar macrophages. Am J Respir Cell Mol Biol. 2014;51(1):135–142. https://doi.org/10.1165/rcmb.2013-0341oc
43. Kohut M.L., Boehm G.W., Moynihan J.A. Prolonged exercise suppresses antigen–specific cytokine response to upper respiratory infection. J Appl Physiol. 2001;90(2):678–684. https://doi.org/10.1152/jappl.2001.90.2.678
44. Ceddia M.A., Woods J.A. Exercise suppresses macrophage antigen presentation. J Appl Physiol. 1999;87(6):2253–2258. https://doi.org/10.1152/jappl.1999.87.6.2253
45. Horstmann D.M. Acute poliomyelitis: relation of physical activity at the time of onset to the course of the disease. JAMA. 1950;142(4):236–241. https://doi.org/10.1001/jama.1950.02910220016004
46. Weinstein L. Poliomyelitis: a persistent problem. N Engl J Med. 1973;288(7):370–371. https://doi.org/10.1056/nejm197302152880714
47. Levinson S.O., Milzer A., Lewin P. Effect of fatigue, chilling and mechanical trauma on resistance to experimental poliomyelitis. Am J Hygiene 1945;42(2):204–213. https://doi.org/10.1093/oxfordjournals.aje.a119037
48. Phillips M., Robinowitz M., Higgins J.R., Boran K.J., Reed T., Virmani R. Sudden cardiac death in Air Force recruits. A 20–year review. JAMA. 1986;256(19):2696–2699. https://doi.org/10.1001/jama.1986.03380190066026
49. Drory Y., Kramer M.R., Lev B. Exertional sudden death in soldiers. Med Sci Sports Exerc. 1991;23(2):147–151. https://doi.org/10.1249/00005768-199102000-00001
50. Nieman D.C. COVID–19: A tocsin to our aging, unfit, corpulent, and immunodeficient society. J. Sport Health Sci. 2020;9(4):293–301. https://doi.org/10.1016/j.jshs.2020.05.001
51. Baron R.C., Hatch M.H., Kleeman K., MacCormack J.N. Aseptic meningitis among members of a high school football team. JAMA. 1982;248(14):1724–1727. https://doi.org/10.1001/jama.248.14.1724
52. Krikler D.N., Zilberg B. Activity and hepatitis. Lancet. 1966;288(7472):1046–1047. https://doi.org/10.1016/s0140-6736(66)92026-5
53. Roberts J.A. Loss of form in young athletes due to viral infection. BMJ. 1985;290(6465):357–358. https://doi.org/10.1136/bmj.290.6465.357
54. Roberts J.A. Viral illnesses and sports performance. Sports Med 1986;3(4):296–303. https://doi.org/10.2165/00007256-198603040-00006
55. Sharp J.C. Viruses and the athlete. Br J Sports Med. 1989;23(1):47–48. https://doi.org/10.1136/bjsm.23.1.47
56. Folsom R.W., LittlefieldChabaud M.A., French D.D., Pourciau S.S., Mistric L., Horohov D.W. Exercise alters the immune response to equine influenza virus and increases susceptibility to infection. Equine Vet J. 2001;33(7):664–669. https://doi.org/10.2746/042516401776249417
57. Parker S., Brukner P., Rosier M. Chronic fatigue syndrome and the athlete. Sports Med Train Rehab. 1996;6(4):269–278. https://doi.org/10.1080/15438629609512057
58. Sanchez J.L., Cooper M.J., Myers C.A., Cummings J.F., Vest K.G., Russell K.L., et al. Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev. 2015;28(3):743– 800. https://doi.org/10.1128/cmr.00039-14
59. Nieman D.C., Lila M.A., Gillitt N.D. Immunometabolism: a multi–omics approach to interpreting the influence of exercise and diet on the immune system. Annu Rev Food Sci Technol. 2019;10(1):341–363. https://doi.org/10.1146/annurev-food-032818-121316
60. Nieman D.C. Immune response to heavy exertion. J Appl Physiol. 1997;82(5):1385–1394. https://doi.org/10.1152/jappl.1997.82.5.1385
61. Simpson R.J., Campbell J.P., Gleeson M., Krüger K., Nieman D.C., Pyne D.B., et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev, 2020;26:8–22.
62. Nieman D.C., Groen A.J., Pugachev A., Simonson A.J., Polley K., James K., et al. Proteomics based detection of immune dysfunction in an elite adventure athlete trekking across the Antarctica. Proteomes. 2020;8(1):4. https://doi.org/10.3390/proteomes8010004
63. Nieman D.C., Wentz L.M. The compelling link between physical activity and the body’s defense system. J Sport Health Sci. 2019;8(3):201–217. https://doi.org/10.1016/j.jshs.2018.09.009
64. Раджабкадиев Р.М., Ригер Н.А., Никитюк Д.Б., Галстян А.Г., Петров А.Н., Евсюкова А.О., Ханферьян Р.А. Cопоставление уровня иммунорегуляторных цитокинов и некоторых антропометрических показателей высококвалифицированных спортсменов. Медицинская иммунология. 2018;20(1):53–60. https://doi.org/10.15789/1563-0625-2018-1-53-60
65. Евстратова В.С., Никитюк Д.Б., Ригер Н.А., Федянина Н.В., Ханферьян Р.А. Оценка секреции in vitro иммунорегуляторных цитокинов дендритными клетками спортсменов-горнолыжников. Бюлл. экспер. биол. и мед., 2016;162(7):72–74.
66. Phillips M., Robinowitz M., Higgins J.R., Boran K.J., Reed T., Virmani R. Sudden cardiac death in Air Force recruits. A 20-year review. JAMA. 1986;256(19):2696–2699. https://doi.org/10.1001/jama.1986.03380190066026
67. Drory Y., Kramer M.R., Lev B. Exertional sudden death in soldiers. Med Sci Sports Exerc 1991;23(2):147–151. https://doi.org/10.1249/00005768-199102000-00001
68. Nieman D.C., Henson D.A., Austin M.D., Sha W. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med. 2011;45(12):987–992. https://doi.org/10.1136/bjsm.2010.077875
69. Kohut M.L., Arntson B.A., Lee W., Rozeboom K., Yoon K.J., Cunnick J.E., et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine. 2004; 22 (17-18):2298–2306. https://doi.org/10.1016/j.vaccine.2003.11.023
70. Duggal N.A., Niemiro G., Harridge S.D.R., Simpson R.J., Lord J.M. Can physical activity ameliorate immunosenescence and thereby reduce age–related multi-morbidity. Nat Rev Immunol. 2019;19(9):563–572. https://doi.org/10.1038/s41577-019-0177-9
71. Duggal N.A., Pollock R.D., Lazarus N.R., Harridge S., Lord J.M. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. 2018;17(2):e12750. https://doi.org/10.1111/acel.12750
72. Lavin K.M., Perkins R.K., Jemiolo B., Raue U., Trappe S.W., Trappe T.A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol. 1985;1281):87–99. https://doi.org/10.1152/japplphysiol.00495.2019
73. Ledo A., Schub D., Ziller C., Enders M., Stenger T., Gärtner B.C. Elite athletes on regular training show more pronounced induction of vaccine-specific T-cells and antibodies after tetravalent influenza vaccination than controls. Brain Behav Immun. 2020;83:135–145. https://doi.org/10.1016/j.bbi.2019.09.024
74. Warren K.J., Olson M.M., Thompson N.J., Cahill M.L., Wyatt T.A., Yoon K.J., et al. Exercise improves host response to influenza viral infection in obese and non-obese mice through different mechanisms. PLoS One. 2015;10(6):e0129713. https://doi.org/10.1371/journal.pone.0129713
75. Kohut M.L., Sim Y.J., Yu S., Yoon K.J., Loiacono C.M. Chronic exercise reduces illness severity, decreases viral load, and results in greater anti-inflammatory effects than acute exercise during influenza infection. J Infect Dis. 2009:200(9):1434–1442. https://doi.org/10.1086/606014
76. Durigon S.T., MacKenzie B., Carneiro Oliveira–Junior M., Santos-Dias A., De Angelis K., Malfitano C., et al. Aerobic exercise protects from Pseudomonas aeruginosa-induced pneumonia in elderly mice. J Innate Immun. 2018;10(4):279–290. https://doi.org/10.1159/000488953
77. Shi Y., Liu T., Nieman D.C., Cui Y., Li F., Yang L., et al. Aerobic exercise attenuates acute lung injury through NET inhibition. Front Immunol. 2020;11:409. https://doi.org/10.3389/fimmu.2020.00409
78. Gupta P., Bigley A.B., Markofski M., Laughlin M., LaVoy E.C. Autologous serum collected 1 h post-exercise enhances natural killer cell cytotoxicity. Brain Behav Immun. 2018;71:81–92. https://doi.org/10.1016/j.bbi.2018.04.007
79. Nieman D.C., Henson D.A., Austin M.D., Brown V.A. Immune response to a 30-minute walk. Med Sci Sports Exerc. 2005;37(1):57–62. https://doi.org/10.1249/01.mss.0000149808.38194.21
80. Sellami M., Gasmi M., Denham J., Hayes L.D., Stratton D., Padulo J., et al. Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging? Front Immunol. 2018;9:2187. https://doi.org/10.3389/fimmu.2018.02187
81. Agha N.H., Mehta S.K., Rooney B.V., Laughlin M.S., Markofski M.M., Pierson D.L., et al. Exercise as a countermeasure for latent viral reactivation during long duration space flight. FASEB J. 2020;34(2):2869–2881. https://doi.org/10.1096/fj.201902327r
82. Bigley A.B., Rezvani K., Chew C., Sekine T., Pistillo M., Crucian B., et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160–171. https://doi.org/10.1016/j.bbi.2013.10.030
83. Simpson R.J., Bigley A.B., Agha N., Hanley P.J., Bollard C.M. Mobilizing immune cells with exercise for cancer immunotherapy. Exerc Sport Sci Rev. 2017;45(3):163–172. https://doi.org/10.1249/jes.0000000000000114
84. Turner J.E., Spielmann G., Wadley A.J., Aldred S., Simpson R.J., Campbell J.P. Exercise-induced B cell mobilization: preliminary evidence for an influx of immature cells into the bloodstream. Physiol Behav. 2016;164:376–382. https://doi.org/10.1016/j.physbeh.2016.06.023
85. Campbell J.P., Riddell N.E., Burns V.E., Turner M., van Zanten J.J., Drayson M.T., et al. Acute exercise mobilizes CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav Immun. 2009;23(6):767–775. https://doi.org/10.1016/j.bbi.2009.02.011
86. Lavin K.M., Perkins R.K., Jemiolo B., Raue U., Trappe S.W., Trappe T.A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol. 2020;128(1):87–99. https://doi.org/10.1152/japplphysiol.00495.2019
87. Kohut M.L., Cooper M.M., Nickolaus M.S., Russell D.R., Cunnick J.E. Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. J Gerontol A Biol Sci Med Sci. 2002;57(9):M557–M562. https://doi.org/10.1093/gerona/57.9.m557
88. Duggal N.A., Pollock R.D., Lazarus N.R., Harridge S., Lord J.M. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. 2018;17(2):e12750. https://doi.org/10.1111/acel.12750
89. Shanely R.A., Nieman D.C., Henson D.A., Jin F., Knab A.M., Sha W. Inflammation and oxidative stress are lower in physically fit and active adults. Scand J Med Sci Sports. 2013;23(2):215–223. https://doi.org/10.1111/j.1600-0838.2011.01373.x
90. Wedell-Neergaard A.S., Krogh-Madsen R., Peter¬sen G.L., Hansen A.M., Pedersen B.K., Lund R., et al. Cardiorespiratory fitness and the metabolic syndrome: roles of inflammation and abdominal obesity. PLoS One. 2018;13(3):e0194991. https://doi.org/10.1371/journal.pone.0194991
91. Ригер Н.А., Евстратова В.С., Апрятин С.А., Гмошинский И.В., Ханферьян Р.А. Значение соотношения концентраций лептина и грелина как биомаркера при индуцированной диетой гиперлипидемии у самок мышей C57Black/6J. Медицинская иммунология. 2018;20(3):341–352. https://doi.org/10.15789/1563-0625-2018-3-341-352
92. Charland K.M., Buckeridge D.L., Hoen A.G., Berry J.G., Elixhauser A., Melton F., et al. Relationship between community prevalence of obesity and associated behavioral factors and community rates of influenza-related hospitalizations in the United States. Influenza Other Respir Viruses. 2013;7(5):718–728. https://doi.org/10.1111/irv.12019
93. Wong C.M., Chan W.M., Yang L., Chan K.P., Lai H.K., Thach T.Q., et al. Effect of lifestyle factors on risk of mortality associated with influenza in elderly people. Hong Kong Med J. 2014;20(6):S16–S19.
94. Nieman D.C., Henson D.A., Austin M.D., Sha W. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med. 2011;45(12):987–992. https://doi.org/10.1136/bjsm.2010.077875
95. Baik I., Curhan G.C., Rimm E.B., Bendich A., Willett W.C., Fawzi W.W. A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med. 2000;160(20):3082–3088. https://doi.org/10.1001/archinte.160.20.3082
96. Inoue Y., Koizumi A., Wada Y., Iso H., Watanabe Y., Date C., et al. Risk and protective factors related to mortality from pneumonia among middle-aged and elderly community residents: the JACC Study. J Epidemiol. 2007;17(6):194–202. https://doi.org/10.2188/jea.17.194
97. Wong C.M., Lai H.K., Ou C.Q., Ho S.Y., Chan K.P., Thach T.Q., et al. Is exercise protective against influenza-associated mortality? PLoS One. 2008;3(5):e2108. https://doi.org/10.1371/journal.pone.0002108
98. Neuman M.I., Willett W.C., Curhan G.C. Physical activity and the risk of community-acquired pneumonia in US women. Am J Med. 2010;123(3):281.e7–281.e11. https://doi.org/10.1016/j.amjmed.2009.07.028
99. Williams P.T. Dose-response relationship between exercise and respiratory disease mortality. Med Sci Sports Exerc. 2014;46(4):711–717. https://doi.org/10.1249/mss.0000000000000142
100. Wu S., Ma C., Yang Z., Yang P., Chu Y., Zhang H., et al. Hygiene behaviors associated with influenza-like illness among adults in Beijing, China: a large, population-based survey. PLoS One. 2016;11(2):e0148448. https://doi.org/10.1371/journal.pone.0148448
101. Ukawa S., Zhao W., Yatsuya H., Yamagishi K., Tanabe N., Iso H., Tamakoshi A. Associations of daily walking time with pneumonia mortality among elderly individuals with or without a medical history of myocardial infarction or stroke: findings from the Japan Collaborative Cohort Study. J Epidemiol. 2019;29(6):233–237. https://doi.org/10.2188/jea.je20170341
102. Hamer M., O’Donovan G., Stamatakis E. Lifestyle risk factors, obesity and infectious disease mortality in the general population: linkage study of 97,844 adults from England and Scotland. Prev Med. 2019;123:65–70. https://doi.org/10.1016/j.ypmed.2019.03.002
103. Charland K.M., Buckeridge D.L., Hoen A.G., Berry J.G., Elixhauser A., Melton F., et al. Relationship between community prevalence of obesity and associated behavioral factors and community rates of influenza-related hospitalizations in the United States. Influenza Other Respir Viruses. 2013;7(5):718–728. https://doi.org/10.1111/irv.12019
104. Lowder T., Padgett D.A., Woods J.A. Moderate exercise protects micefrom death due to influenza virus. Brain Behav Immun. 2005; 19(5):377–380. https://doi.org/10.1016/j.bbi.2005.04.002
105. Paulsen J., Askim Å., Mohus R.M., Mehl A., Dewan A., Solligård E., et al. Associations of obesity and lifestyle with the risk and mortality of bloodstream infection in a general population: a 15–year follow-up of 64 027 individuals in the HUNT Study. Int J Epidemiol. 2017;46(5):1573–1581. https://doi.org/10.1093/ije/dyx091
106. Powell K.E., King A.C., Buchner D.M., Campbell W.W., DiPietro L., Erickson K.I., et al. The scientific foundation for the physical activity guidelines for Americans, 2nd edition. J Phys Act Health. 2019;16(1):1–11. https://doi.org/10.1123/ jpah.2018-0618
107. Jordan R.E., Adab P., Cheng K.K. Covid-19: risk factors for severe disease and death. BMJ. 2020;368:m1198. https://doi.org/10.1136/bmj.m1198
108. Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции. Инфекция и иммунитет. 2020;10(2):259–268. https://doi.org/10.15789/2220-7619-III-1440
109. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5
110. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–1325. https://doi.org/10.1016/s0140-6736(03)13077-2
111. Chien J.Y., Hsueh P.R., Cheng W.C., Yu C.J., Yang P.C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11(6):715–722. https://doi.org/10.1111/j.1440-1843.2006.00942.x
112. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. https://doi.org/10.1111/j.1365-2249.2004.02415.x
113. Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans. 2017;45(4):905–911. https://doi.org/10.1042/bst20160466
114. Grande A., Keogh J., Silva V., Scott A.M. Exercise versus no exercisefor the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst Rev. 2020;4(4):CD010596. https://doi.org/10.1002/14651858.cd010596.pub3
115. Pascoe A.R., Fiatarone Singh M.A., Edwards K.M. The effects of exercise on vaccination responses: a review of chronic and acute exercise interventions in humans. Brain Behav Immun. 2014;39:33–41. https://doi.org/10.1016/j.bbi.2013.10.003
116. Sallis J.F., Adlakha D., Oyeyemi A., Salvo D. An international physical activity and public health research agenda to inform coronavirus disease-19 policies and practices. J Sport Health Sci. 2020;9(4):328–334. https://doi.org/10.1016/j.jshs.2020.05.005
Для цитирования:
Ханферьян Р.А., Радыш И.А., Суровцев В.В., Коростелева М.М., Алешина И.В. Значение физической активности в регуляции противовирусного иммунитета. Спортивная медицина: наука и практика. 2020;10(3):27-39. https://doi.org/10.47529/2223-2524.2020.3.27
For citation:
Khanferyan R.A., Radysh I.V., Surovtsev V.V., Korosteleva M.M., Aleshina I.V. The importance of physical activity in the regulation of anti-viral immunity. Sports medicine: research and practice. 2020;10(3):27-39. (In Russ.) https://doi.org/10.47529/2223-2524.2020.3.27