Preview

Sports medicine: research and practice

Advanced search

The importance of physical activity in the regulation of anti-viral immunity

https://doi.org/10.47529/2223-2524.2020.3.27

Abstract

The paper reviews the current data on the effect and role of varying intensity physical activity in the prevention of various respiratory virus infections, including influenza virus and SARS-CoV-2 coronavirus. The paper discusses the effect of varying intensity physical activity on antiviral immunity, cellular and cytokine responses to respiratory virus infections, physical activity influence on vaccination effectiveness and the role of regular moderate intensity physical activity in the prevention of viral infection in patients with obesity, overweight, diabetes and other metabolic disorders. The paper analyzes physical activity role in the prevention of SARS-CoV-2 infection, as well as in the conditions of self-isolation and quarantine.

About the Authors

R. A. Khanferyan
Peoples’ Friendship University of Russia
Russian Federation

Roman A. Khanferyan*, D.M.Sci., Professor of the Department of Immunology and Allergology

6, Miklouho-Maclay str., Moscow, Russia, 117198



I. V. Radysh
Peoples’ Friendship University of Russia
Russian Federation

Ivan V. Radysh, D.M.Sci., Head. Department of Nursing, Medical Institute

6, Miklouho-Maclay str., Moscow, Russia, 117198



V. V. Surovtsev
Peoples’ Friendship University of Russia
Russian Federation

Viktor V. Surovtsev, Deputy Director of the Medical I,

6Miklouho-Maclay str., Moscow, Russia, 117198

 



M. M. Korosteleva
All-Russian Research Institute of the Dairy Industry
Russian Federation

Margarita M. Korosteleva, Senior Researcher 

35, Lyusinovskaya str., Moscow, Russia, 115093



I. V. Aleshina
Federal Research Center for Nutrition and Biotechnology
Russian Federation

Irina V. Aleshina, researcher 

2/14, Ustyinsky pr., Moscow, Russia, 109240



References

1. Nieman D.C., Wentz L.M. The compelling link between physical activity and the body’s defense system. J Sport Health Sci. 2019;8(3):201–217. https://doi.org/10.1016/j.jshs.2018.09.009

2. Kulenenkov O.S. Pharmacology of sports in tables and diagrams. 2nd ed. Moscow: Sport; 2015. 176 p. (in Russ.).

3. Baetjer A. The effect of muscular fatigue upon resistance. Physiol Rev. 1932;12(3):453–468. https://doi.org/10.1152/physrev.1932.12.3.453

4. Horstmann D.M. Acute poliomyelitis: relation of physical activity at the time of onset to the course of the disease. JAMA. 1950;142(4):236–241. https://doi.org/10.1001/jama.1950.02910220016004

5. Levinson S.O., Milzer A., Lewin P. Effect of fatigue, chilling and mechanical trauma on resistance to experimental poliomyelitis. Am J Hygiene 1945;42(2):204–213. https://doi.org/10.1093/oxfordjournals.aje.a119037

6. Weinstein L. Poliomyelitis: a persistent problem. N Engl J Med 1973;288(7):370–372. https://doi.org/10.1056/nejm197302152880714

7. Reyes M.P., Lerner A.M. Interferon and neutralizing antibody in sera of exercised mice with Coxsackievirus B–3 myocarditis. Exp Bio Med 1976;151(2):333–338. https://doi.org/10.3181/00379727-151-39204

8. Ilbäck N.G., Friman G., Beisel W.R., Johnson A.J., Berendt R.F. Modifying effects of exercise on clinical course and biochemical response of the myocardium in influenza and tularemia in mice. Infect Immun 1984;45(2):498–504. https://doi.org/10.1128/iai.45.2.498–504.1984

9. Davis J.M., Murphy E.A., McClellan J.L., Carmichael M.D., Gangemi J.D. Quercetin reduces susceptibility to influenza infection following stressful exercise. Am J Physiol Regul Integr Comp Physiol 2008;295(2):R505–R509. https://doi.org/10.1152/ajpregu.90319.2008

10. Murphy E.A., Davis J.M., Carmichael M.D., Gangemi J.D., Ghaffar A., Mayer E.P. Exercise stress increases susceptibility to influenza infection. Brain Behav Immun 2008;22(8):1152–155. https://doi.org/10.1016/j.bbi.2008.06.004

11. Murphy E.A., Davis J.M., Brown A.S., Carmichael M.D., Carson J.A., Van Rooijen N., et al. Benefits of oat beta–glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol 2008;294(5):R1593–R1599. https://doi.org/10.1152/ajpregu.00562.2007

12. Shi Y., Shi H., Nieman D.C., Hu Q., Yang L., Liu T., et al. Lactic acid accumulation during exhaustive exercise impairs release of neutrophil extracellular traps in mice. Front Physiol. 2019;10:709. https://doi.org/10.3389/fphys.2019.00709

13. Chao C.C., Strgar F., Tsang M., Peterson P.K. Effects of swimming exercise on the pathogenesis of acute murine Toxoplasma gondii Me49 infection. Clin Immunol Immunopathol. 1992;62(2):220–226. https://doi.org/10.1016/0090-1229(92)90075-y

14. Davis J.M., Kohut M.L., Colbert L.H., Jackson D.A., Ghaffar A., Mayer E.P. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol. 1997;83(5):1461–1466. https://doi.org/10.1152/jappl.1997.83.5.1461

15. Ceddia M.A., Voss E.W., Woods J.A. Intracellular mechanisms responsible for exerciseinduced suppression of macrophage antigen presentation. J Appl Physiol. 2000;88(2):804–810. https://doi.org/10.1152/jappl.2000.88.2.804

16. Woods J.A., Ceddia M.A., Kozak C., Wolters B.W. Effects of exercise on the macrophage MHC II response to inflammation. Int J Sports Med. 1997;18(6):483–488. https://doi.org/10.1055/s-2007-972668

17. Frellstedt L., Waldschmidt I., Gosset P., Desmet C., Pirottin D., Bureau F., et al. Training modifies innate immune responses in blood monocytes and in pulmonary alveolar macrophages. Am J Respir Cell Mol Biol. 2014;51(1):135–142. https://doi.org/10.1165/rcmb.2013-0341oc

18. Kohut M.L., Boehm G.W., Moynihan J.A. Prolonged exercise suppresses antigen-specific cytokine response to upper respiratory infection. J Appl Physiol. 2001;90(2):678–84. https://doi.org/10.1152/jappl.2001.90.2.678

19. Ceddia M.A., Woods J.A. Exercise suppresses macrophage antigen presentation. J Appl Physiol. 1999;87(6):2253–2258. https://doi.org/10.1152/jappl.1999.87.6.2253

20. Baron R.C., Hatch M.H., Kleeman K., MacCormack J.N. Aseptic meningitis among members of a high school football team. JAMA. 1982;248(14):1724–1727. https://doi.org/10.1001/jama.1982.03330140034028

21. Roberts J.A. Loss of form in young athletes due to viral infection. BMJ. 1985;290(6465):357–358. https://doi.org/10.1136/bmj.290.6465.357

22. Roberts J.A. Viral illnesses and sports performance. Sports Med 1986;3(4):298–303. https://doi.org/10.2165/00007256-198603040-00006

23. Sharp J.C.M. Viruses and the athlete. Br J Sports Med 1989;23(1):47–48. https://doi.org/10.1136/bjsm.23.1.47

24. Folsom R.W., Littlefield-Chabaud M.A., French D.D., Pourciau S.S., Mistric L., Horohov D.W. Exercise alters the immune response to equine influenza virus and increases susceptibility to infection. Equine Vet J. 2001;33(7):664–669. https://doi.org/10.2746/042516401776249417

25. Parker S., Brukner P., Rosier M. Chronic fatigue syndrome and the athlete. Sports Med Train Rehab. 1996;6(4):269–278. https://doi.org/10.1080/15438629609512057

26. Sanchez J.L., Cooper M.J., Myers C.A., Cummings J.F., Vest K.G., Russell K.L., et al. Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev 2015;28(3):743–800. https://doi.org/10.1128/cmr.00039–14

27. Porsolt R.D., Le Pichon M., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266 (5604):730–732. https://doi.org/10.1038/266730a0

28. Rylova M.L. Research methods of the chronic action of harmful factors in the experiment. Leningrad: Medicine; 1964. 148 р. (In Russ.).

29. Karkischenko N.N., Uyba V.V., Karkishchenko V.N., Shustov E.B. Essays on sports pharmacology. Vol. 1. Extrapolation vectors. Moscow, St. Petersburg: Aising; 2013. 288 р. (In Russ.).

30. Dawson C., Horvath S. Swimming in small laboratory animals. Med Sci Sports. 1970;2(2):51–78. https://doi.org/10.1249/00005768-197000220-00002

31. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820. https://doi.org/10.1056/nejmoa1211721

32. Zimmer P., Schenk A., Kieven M., Holthaus M., Lehmann J., Lövenich L., Bloch W. Exercise induced alterations in NK-cell cytotoxicity-methodological issues and future perspectives. Exerc Immunol Rev. 2017; 23: 66–81.

33. Davis J.M., Murphy E.A., McClellan J.L., Carmichael M.D., Gangemi J.D. Quercetin reduces susceptibility to influenza infection following stressful exercise. Am J Physiol Regul Integr Comp Physiol. 2008;295(2):R505–R509. https://doi.org/10.1152/ajpregu.90319.2008

34. Murphy E.A., Davis J.M., Carmichael M.D., Gangemi J.D., Ghaffar A., Mayer E.P. Exercise stress increases susceptibility to influenza infection. Brain Behav Immun. 2008;22(8):1152–1155. https://doi.org/10.1016/j.bbi.2008.06.004

35. Murphy E.A., Davis J.M., Brown A.S., Carmichael M.D., Carson J.A., Van Rooijen N., et al. Benefits of oat beta–glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol 2008;294(5):R1593–R1599. https://doi.org/10.1152/ajpregu.00562.2007

36. Shi Y., Shi H., Nieman D.C., Hu Q., Yang L., Liu T., et al. Lactic acid accumulation during exhaustive exercise impairs release of neutrophil extracellular traps in mice. Front Physiol. 2019;10:709. https://doi.org/ 10.3389/fphys.2019.00709

37. Chao C.C., Strgar F., Tsang M., Peterson P.K. Effects of swimming exercise on the pathogenesis of acute murine Toxoplasma gondii Me49 infection. Clin Immunol Immunopathol. 1992;62(2):220–226. https://doi.org/10.1016/0090-1229(92)90075-y

38. Davis J.M., Kohut M.L., Colbert L.H., Jackson D.A., Ghaffar A., Mayer E.P. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol. 1997;83(5):1461–1466. https://doi.org/10.1152/jappl.1997.83.5.1461

39. Ceddia M.A., Voss E.W. Jr, Woods J.A. Intracellular mechanisms responsible for exerciseinduced suppression of macrophage antigen presentation. J Appl Physiol. 2000;88(2):804–810. https://doi.org/10.1152/jappl.2000.88.2.804

40. Woods JA, Ceddia MA, Kozak C, Wolters BW. Effects of exercise on the macrophage MHC II response to inflammation. Int J Sports Med 1997;18:483–488.

41. Murphy E.A., Davis J.M., Brown A.S., Carmichael M.D., Van Rooijen N., Ghaffar A., et al. Role of lung macrophages on susceptibility to respiratory infection following short-term moderate exercise training. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1354–R1358. https://doi.org/10.1152/ajpregu.00274.2004

42. Frellstedt L, Waldschmidt I, Gosset P, Desmet C, Pirottin D, Bureau F, et al. Training modifies innate immune responses in blood monocytes and in pulmonary alveolar macrophages. Am J Respir Cell Mol Biol. 2014;51(1):135–142. https://doi.org/10.1165/rcmb.2013-0341oc

43. Kohut M.L., Boehm G.W., Moynihan J.A. Prolonged exercise suppresses antigen–specific cytokine response to upper respiratory infection. J Appl Physiol. 2001;90(2):678–684. https://doi.org/10.1152/jappl.2001.90.2.678

44. Ceddia M.A., Woods J.A. Exercise suppresses macrophage antigen presentation. J Appl Physiol. 1999;87(6):2253–2258. https://doi.org/10.1152/jappl.1999.87.6.2253

45. Horstmann D.M. Acute poliomyelitis: relation of physical activity at the time of onset to the course of the disease. JAMA. 1950;142(4):236–241. https://doi.org/10.1001/jama.1950.02910220016004

46. Weinstein L. Poliomyelitis: a persistent problem. N Engl J Med. 1973;288(7):370–371. https://doi.org/10.1056/nejm197302152880714

47. Levinson S.O., Milzer A., Lewin P. Effect of fatigue, chilling and mechanical trauma on resistance to experimental poliomyelitis. Am J Hygiene 1945;42(2):204–213. https://doi.org/10.1093/oxfordjournals.aje.a119037

48. Phillips M., Robinowitz M., Higgins J.R., Boran K.J., Reed T., Virmani R. Sudden cardiac death in Air Force recruits. A 20–year review. JAMA. 1986;256(19):2696–2699. https://doi.org/10.1001/jama.1986.03380190066026

49. Drory Y., Kramer M.R., Lev B. Exertional sudden death in soldiers. Med Sci Sports Exerc. 1991;23(2):147–151. https://doi.org/10.1249/00005768-199102000-00001

50. Nieman D.C. COVID–19: A tocsin to our aging, unfit, corpulent, and immunodeficient society. J. Sport Health Sci. 2020;9(4):293–301. https://doi.org/10.1016/j.jshs.2020.05.001

51. Baron R.C., Hatch M.H., Kleeman K., MacCormack J.N. Aseptic meningitis among members of a high school football team. JAMA. 1982;248(14):1724–1727. https://doi.org/10.1001/jama.248.14.1724

52. Krikler D.N., Zilberg B. Activity and hepatitis. Lancet. 1966;288(7472):1046–1047. https://doi.org/10.1016/s0140-6736(66)92026-5

53. Roberts J.A. Loss of form in young athletes due to viral infection. BMJ. 1985;290(6465):357–358. https://doi.org/10.1136/bmj.290.6465.357

54. Roberts J.A. Viral illnesses and sports performance. Sports Med 1986;3(4):296–303. https://doi.org/10.2165/00007256-198603040-00006

55. Sharp J.C. Viruses and the athlete. Br J Sports Med. 1989;23(1):47–48. https://doi.org/10.1136/bjsm.23.1.47

56. Folsom R.W., LittlefieldChabaud M.A., French D.D., Pourciau S.S., Mistric L., Horohov D.W. Exercise alters the immune response to equine influenza virus and increases susceptibility to infection. Equine Vet J. 2001;33(7):664–669. https://doi.org/10.2746/042516401776249417

57. Parker S., Brukner P., Rosier M. Chronic fatigue syndrome and the athlete. Sports Med Train Rehab. 1996;6(4):269–278. https://doi.org/10.1080/15438629609512057

58. Sanchez J.L., Cooper M.J., Myers C.A., Cummings J.F., Vest K.G., Russell K.L., et al. Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev. 2015;28(3):743– 800. https://doi.org/10.1128/cmr.00039-14

59. Nieman D.C., Lila M.A., Gillitt N.D. Immunometabolism: a multi–omics approach to interpreting the influence of exercise and diet on the immune system. Annu Rev Food Sci Technol. 2019;10(1):341–363. https://doi.org/10.1146/annurev-food-032818-121316

60. Nieman D.C. Immune response to heavy exertion. J Appl Physiol. 1997;82(5):1385–1394. https://doi.org/10.1152/jappl.1997.82.5.1385

61. Simpson R.J., Campbell J.P., Gleeson M., Krüger K., Nieman D.C., Pyne D.B., et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev, 2020;26:8–22.

62. Nieman D.C., Groen A.J., Pugachev A., Simonson A.J., Polley K., James K., et al. Proteomics based detection of immune dysfunction in an elite adventure athlete trekking across the Antarctica. Proteomes. 2020;8(1):4. https://doi.org/10.3390/proteomes8010004

63. Nieman D.C., Wentz L.M. The compelling link between physical activity and the body’s defense system. J Sport Health Sci. 2019;8(3):201–217. https://doi.org/10.1016/j.jshs.2018.09.009

64. Radzhabkadiev R.M., Riger N.A., Nikityuk D.B., Galstyan A.G., Petrov A.N., Evsyukova A.O., Khanferyan R.A. Comparison of the level of immunoregulatory cytokines and some anthropometric indicators of highly qualified athletes. Meditsinskaya immunologiya = Medical immunology. 2018;20(1):53–60. https://doi.org/10.15789/1563-0625-2018-1-53-60 (In Russ.).

65. Evstratova V.S., Nikityuk D.B., Riger N.A., Fedyanina N.V., Khanferyan R.A. Evaluation of in vitro secretion of immunoregulatory cytokines by dendritic cells of athletes-skiers. Byulleten' eksperimental'noy biologii i meditsiny = Bull. Exp. Biol. and Med., 2016;162(7):72–74 (In Russ.).

66. Phillips M., Robinowitz M., Higgins J.R., Boran K.J., Reed T., Virmani R. Sudden cardiac death in Air Force recruits. A 20-year review. JAMA. 1986;256(19):2696–2699. https://doi.org/10.1001/jama.1986.03380190066026

67. Drory Y., Kramer M.R., Lev B. Exertional sudden death in soldiers. Med Sci Sports Exerc 1991;23(2):147–151. https://doi.org/10.1249/00005768-199102000-00001

68. Nieman D.C., Henson D.A., Austin M.D., Sha W. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med. 2011;45(12):987–992. https://doi.org/10.1136/bjsm.2010.077875

69. Kohut M.L., Arntson B.A., Lee W., Rozeboom K., Yoon K.J., Cunnick J.E., et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine. 2004; 22 (17-18):2298–2306. https://doi.org/10.1016/j.vaccine.2003.11.023

70. Duggal N.A., Niemiro G., Harridge S.D.R., Simpson R.J., Lord J.M. Can physical activity ameliorate immunosenescence and thereby reduce age–related multi-morbidity. Nat Rev Immunol. 2019;19(9):563–572. https://doi.org/10.1038/s41577-019-0177-9

71. Duggal N.A., Pollock R.D., Lazarus N.R., Harridge S., Lord J.M. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. 2018;17(2):e12750. https://doi.org/10.1111/acel.12750

72. Lavin K.M., Perkins R.K., Jemiolo B., Raue U., Trappe S.W., Trappe T.A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol. 1985;1281):87–99. https://doi.org/10.1152/japplphysiol.00495.2019

73. Ledo A., Schub D., Ziller C., Enders M., Stenger T., Gärtner B.C. Elite athletes on regular training show more pronounced induction of vaccine-specific T-cells and antibodies after tetravalent influenza vaccination than controls. Brain Behav Immun. 2020;83:135–145. https://doi.org/10.1016/j.bbi.2019.09.024

74. Warren K.J., Olson M.M., Thompson N.J., Cahill M.L., Wyatt T.A., Yoon K.J., et al. Exercise improves host response to influenza viral infection in obese and non-obese mice through different mechanisms. PLoS One. 2015;10(6):e0129713. https://doi.org/10.1371/journal.pone.0129713

75. Kohut M.L., Sim Y.J., Yu S., Yoon K.J., Loiacono C.M. Chronic exercise reduces illness severity, decreases viral load, and results in greater anti-inflammatory effects than acute exercise during influenza infection. J Infect Dis. 2009:200(9):1434–1442. https://doi.org/10.1086/606014

76. Durigon S.T., MacKenzie B., Carneiro Oliveira–Junior M., Santos-Dias A., De Angelis K., Malfitano C., et al. Aerobic exercise protects from Pseudomonas aeruginosa-induced pneumonia in elderly mice. J Innate Immun. 2018;10(4):279–290. https://doi.org/10.1159/000488953

77. Shi Y., Liu T., Nieman D.C., Cui Y., Li F., Yang L., et al. Aerobic exercise attenuates acute lung injury through NET inhibition. Front Immunol. 2020;11:409. https://doi.org/10.3389/fimmu.2020.00409

78. Gupta P., Bigley A.B., Markofski M., Laughlin M., LaVoy E.C. Autologous serum collected 1 h post-exercise enhances natural killer cell cytotoxicity. Brain Behav Immun. 2018;71:81–92. https://doi.org/10.1016/j.bbi.2018.04.007

79. Nieman D.C., Henson D.A., Austin M.D., Brown V.A. Immune response to a 30-minute walk. Med Sci Sports Exerc. 2005;37(1):57–62. https://doi.org/10.1249/01.mss.0000149808.38194.21

80. Sellami M., Gasmi M., Denham J., Hayes L.D., Stratton D., Padulo J., et al. Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging? Front Immunol. 2018;9:2187. https://doi.org/10.3389/fimmu.2018.02187

81. Agha N.H., Mehta S.K., Rooney B.V., Laughlin M.S., Markofski M.M., Pierson D.L., et al. Exercise as a countermeasure for latent viral reactivation during long duration space flight. FASEB J. 2020;34(2):2869–2881. https://doi.org/10.1096/fj.201902327r

82. Bigley A.B., Rezvani K., Chew C., Sekine T., Pistillo M., Crucian B., et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160–171. https://doi.org/10.1016/j.bbi.2013.10.030

83. Simpson R.J., Bigley A.B., Agha N., Hanley P.J., Bollard C.M. Mobilizing immune cells with exercise for cancer immunotherapy. Exerc Sport Sci Rev. 2017;45(3):163–172. https://doi.org/10.1249/jes.0000000000000114

84. Turner J.E., Spielmann G., Wadley A.J., Aldred S., Simpson R.J., Campbell J.P. Exercise-induced B cell mobilization: preliminary evidence for an influx of immature cells into the bloodstream. Physiol Behav. 2016;164:376–382. https://doi.org/10.1016/j.physbeh.2016.06.023

85. Campbell J.P., Riddell N.E., Burns V.E., Turner M., van Zanten J.J., Drayson M.T., et al. Acute exercise mobilizes CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav Immun. 2009;23(6):767–775. https://doi.org/10.1016/j.bbi.2009.02.011

86. Lavin K.M., Perkins R.K., Jemiolo B., Raue U., Trappe S.W., Trappe T.A. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol. 2020;128(1):87–99. https://doi.org/10.1152/japplphysiol.00495.2019

87. Kohut M.L., Cooper M.M., Nickolaus M.S., Russell D.R., Cunnick J.E. Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. J Gerontol A Biol Sci Med Sci. 2002;57(9):M557–M562. https://doi.org/10.1093/gerona/57.9.m557

88. Duggal N.A., Pollock R.D., Lazarus N.R., Harridge S., Lord J.M. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. 2018;17(2):e12750. https://doi.org/10.1111/acel.12750

89. Shanely R.A., Nieman D.C., Henson D.A., Jin F., Knab A.M., Sha W. Inflammation and oxidative stress are lower in physically fit and active adults. Scand J Med Sci Sports. 2013;23(2):215–223. https://doi.org/10.1111/j.1600-0838.2011.01373.x

90. Wedell-Neergaard A.S., Krogh-Madsen R., Peter¬sen G.L., Hansen A.M., Pedersen B.K., Lund R., et al. Cardiorespiratory fitness and the metabolic syndrome: roles of inflammation and abdominal obesity. PLoS One. 2018;13(3):e0194991. https://doi.org/10.1371/journal.pone.0194991

91. Riger N.A., Evstratova V.S., Apryatin S.A., Gmoshinsky I.V., Khanferyan R.A. Significance of the ratio of leptin and ghrelin concentrations as a biomarker for diet-induced hyperlipidemia in female C57Black / 6J mice. Meditsinskaya immunologiya = Medical immunology. 2018;20(3):341–352 (In Russ.). https://doi.org/10.15789/1563-0625-2018-3-341-352

92. Charland K.M., Buckeridge D.L., Hoen A.G., Berry J.G., Elixhauser A., Melton F., et al. Relationship between community prevalence of obesity and associated behavioral factors and community rates of influenza-related hospitalizations in the United States. Influenza Other Respir Viruses. 2013;7(5):718–728. https://doi.org/10.1111/irv.12019

93. Wong C.M., Chan W.M., Yang L., Chan K.P., Lai H.K., Thach T.Q., et al. Effect of lifestyle factors on risk of mortality associated with influenza in elderly people. Hong Kong Med J. 2014;20(6):S16–S19.

94. Nieman D.C., Henson D.A., Austin M.D., Sha W. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med. 2011;45(12):987–992. https://doi.org/10.1136/bjsm.2010.077875

95. Baik I., Curhan G.C., Rimm E.B., Bendich A., Willett W.C., Fawzi W.W. A prospective study of age and lifestyle factors in relation to community-acquired pneumonia in US men and women. Arch Intern Med. 2000;160(20):3082–3088. https://doi.org/10.1001/archinte.160.20.3082

96. Inoue Y., Koizumi A., Wada Y., Iso H., Watanabe Y., Date C., et al. Risk and protective factors related to mortality from pneumonia among middle-aged and elderly community residents: the JACC Study. J Epidemiol. 2007;17(6):194–202. https://doi.org/10.2188/jea.17.194

97. Wong C.M., Lai H.K., Ou C.Q., Ho S.Y., Chan K.P., Thach T.Q., et al. Is exercise protective against influenza-associated mortality? PLoS One. 2008;3(5):e2108. https://doi.org/10.1371/journal.pone.0002108

98. Neuman M.I., Willett W.C., Curhan G.C. Physical activity and the risk of community-acquired pneumonia in US women. Am J Med. 2010;123(3):281.e7–281.e11. https://doi.org/10.1016/j.amjmed.2009.07.028

99. Williams P.T. Dose-response relationship between exercise and respiratory disease mortality. Med Sci Sports Exerc. 2014;46(4):711–717. https://doi.org/10.1249/mss.0000000000000142

100. Wu S., Ma C., Yang Z., Yang P., Chu Y., Zhang H., et al. Hygiene behaviors associated with influenza-like illness among adults in Beijing, China: a large, population-based survey. PLoS One. 2016;11(2):e0148448. https://doi.org/10.1371/journal.pone.0148448

101. Ukawa S., Zhao W., Yatsuya H., Yamagishi K., Tanabe N., Iso H., Tamakoshi A. Associations of daily walking time with pneumonia mortality among elderly individuals with or without a medical history of myocardial infarction or stroke: findings from the Japan Collaborative Cohort Study. J Epidemiol. 2019;29(6):233–237. https://doi.org/10.2188/jea.je20170341

102. Hamer M., O’Donovan G., Stamatakis E. Lifestyle risk factors, obesity and infectious disease mortality in the general population: linkage study of 97,844 adults from England and Scotland. Prev Med. 2019;123:65–70. https://doi.org/10.1016/j.ypmed.2019.03.002

103. Charland K.M., Buckeridge D.L., Hoen A.G., Berry J.G., Elixhauser A., Melton F., et al. Relationship between community prevalence of obesity and associated behavioral factors and community rates of influenza-related hospitalizations in the United States. Influenza Other Respir Viruses. 2013;7(5):718–728. https://doi.org/10.1111/irv.12019

104. Lowder T., Padgett D.A., Woods J.A. Moderate exercise protects micefrom death due to influenza virus. Brain Behav Immun. 2005; 19(5):377–380. https://doi.org/10.1016/j.bbi.2005.04.002

105. Paulsen J., Askim Å., Mohus R.M., Mehl A., Dewan A., Solligård E., et al. Associations of obesity and lifestyle with the risk and mortality of bloodstream infection in a general population: a 15–year follow-up of 64 027 individuals in the HUNT Study. Int J Epidemiol. 2017;46(5):1573–1581. https://doi.org/10.1093/ije/dyx091

106. Powell K.E., King A.C., Buchner D.M., Campbell W.W., DiPietro L., Erickson K.I., et al. The scientific foundation for the physical activity guidelines for Americans, 2nd edition. J Phys Act Health. 2019;16(1):1–11. https://doi.org/10.1123/ jpah.2018-0618

107. Jordan R.E., Adab P., Cheng K.K. Covid-19: risk factors for severe disease and death. BMJ. 2020;368:m1198. https://doi.org/10.1136/bmj.m1198

108. Smirnov V.S., Totolyan A.A. Congenital immunity in coronavirus infection. Infektsiya i immunitet = Infection and immunity. 2020;10(2):259-268 (In Russ.). https://doi.org/10.15789/2220-7619-III-1440

109. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

110. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–1325. https://doi.org/10.1016/s0140-6736(03)13077-2

111. Chien J.Y., Hsueh P.R., Cheng W.C., Yu C.J., Yang P.C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11(6):715–722. https://doi.org/10.1111/j.1440-1843.2006.00942.x

112. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. https://doi.org/10.1111/j.1365-2249.2004.02415.x

113. Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans. 2017;45(4):905–911. https://doi.org/10.1042/bst20160466

114. Grande A., Keogh J., Silva V., Scott A.M. Exercise versus no exercisefor the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst Rev. 2020;4(4):CD010596. https://doi.org/10.1002/14651858.cd010596.pub3

115. Pascoe A.R., Fiatarone Singh M.A., Edwards K.M. The effects of exercise on vaccination responses: a review of chronic and acute exercise interventions in humans. Brain Behav Immun. 2014;39:33–41. https://doi.org/10.1016/j.bbi.2013.10.003

116. Sallis J.F., Adlakha D., Oyeyemi A., Salvo D. An international physical activity and public health research agenda to inform coronavirus disease-19 policies and practices. J Sport Health Sci. 2020;9(4):328–334. https://doi.org/10.1016/j.jshs.2020.05.005


Review

For citations:


Khanferyan R.A., Radysh I.V., Surovtsev V.V., Korosteleva M.M., Aleshina I.V. The importance of physical activity in the regulation of anti-viral immunity. Sports medicine: research and practice. 2020;10(3):27-39. (In Russ.) https://doi.org/10.47529/2223-2524.2020.3.27

Views: 1134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)