Preview

Sports medicine: research and practice

Advanced search

β2-agonists in sports: prevalence and impact on athletic performance

https://doi.org/10.47529/2223-2524.2021.3.6

Abstract

Respiratory disorders caused by exercise are expressed in the development of exercise-induced bronchoconstriction (EIB) and exercise-induced asthma (EIA), which are observed in athletes, especially in cyclic sports, much more often than in the population. Ventilation impairments are exacerbated by inhaled allergens, industrial pollutants and adverse environmental conditions, which increase the risk of EIB and asthma symptoms in athletes. The use of β2-agonists can prevent or eliminate ventilation disorders, however, it requires taking into account current anti-doping rules, which allow the use of certain substances in sports without a request for therapeutic use. The studies of the influence of β2-agonists on functional indicators of athletes and sports performance do not allow to make an unambiguous conclusion about its results. Medications with β2-agonists, approved for use in sports in the form of inhalation, do not have a significant effect on the performance of athletes at major sports competitions. At the same time, the systemic use of these substances and the use of any form of terbutaline caused a positive dynamics in functional indicators, which could lead to an illegal increase in the effectiveness of sports performance. Most of the conclusions about the effect of β2-agonists on outcome are based on a small number of studies, their heterogeneity, and an insignificant number of observations. It is necessary to continue studying the effects of β2-agonists in the course of randomized clinical trials in order to individualize therapy and prevent bronchial obstruction in athletes

About the Authors

A. A. Derevoedov
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Aleksandr A. Derevoedov, M.D., Ph.D. (Medicine), Leading Researcher of the Organizational and Research Department 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



A. V. Zholinsky
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Andrey V. Zholinsky, M.D., Ph.D. (Medicine), Director 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



V. S. Feshchenko
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Vladimir S. Feshchenko, M.D., Ph.D. (Medicine), Head of the Organizational-Research Department 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



I. T. Vykhodets
The Federal Medical Biological Agency
Russian Federation

Igor T. Vykhodets, M.D., Ph.D. (Medicine), Deputy Head of the Office of the Organization of Sports Medicine

30 Volokolamskoe highway, Moscow, 123182



A. A. Pavlova
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Anna A. Pavlova, sports medicine physician of the Department of medical support of sports teams and competitions

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



References

1. Billington Ch.K., Ojo O.O., Penn R.B., Ito S. cAMP regulation of airway smooth muscle function. Pulm. Pharmacol. Ther. 2013;26(1):112–120. https://doi.org/10.1016/j.pupt.2012.05.007

2. Moreira A., Bonini M., Pawankar R., Anderson S. D., Carlsen K-H., Randolph K., et al. World Allergy Organization international survey on physical activity as a treatment option for asthma and allergies. World Allergy Organ. J. 2014;7(1):34. https://doi.org/10.1186/1939-4551-7-34

3. Eichenberger Ph. A., Diener S. N., Kofmehl R., Spengler Ch. M. Effects of exercise training on airway hyperreactivity in asthma: a systematic review and meta-analysis. Sports Med. 2013;43(11):1157–1170. https://doi.org/10.1007/s40279-013-0077-2

4. Sanz-Santiago V., Diez-Vega I., Elena Santana-Sosa E., Nuevo C. L., Ramirez T. I., Vendrusculo F. M., et al. Effect of a combined exercise program on physical fitness, lung function, and quality of life in patients with controlled asthma and exercise symptoms: A randomized controlled trial. Pediatr. Pulmonol. 2020;55(7):1608–1616. https://doi.org/10.1002/ppul.24798

5. Del Giacco S.T., Garcia-Larsen V. Aerobic exercise training reduces bronchial hyper-responsiveness and serum proinflammatory cytokines in patients with asthma. Evid. Based Med. 2016;21(2):70. https://doi.org/10.1136/ebmed-2015-110260

6. Bonini M., Palange P. Exercise-induced bronchoconstriction: new evidence in pathogenesis, diagnosis and treatment. Asthma Res. Pract. 2015;1:2. https://doi.org/10.1186/s40733-015-0004-4

7. Parsons J.P., Hallstrand T.S., Mastronarde J.G., Kaminsky D.A., Rundell K.W., Hull J.H., et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 2013;187(9):1016–1027. https://doi.org/10.1164/rccm.201303-0437ST

8. Jones R.S., Buston M.H., Wharton M.J. The effect of exercise on ventilatory function in the child with asthma. Br. J. Dis. Chest. 1962;56(2):78–86. https://doi.org/10.1016/s0007-0971(62)80005-9

9. Fitch K.D., Sue-Chu M., Anderson S.D., Boulet L-P., Hancox R.J., McKenzie D.C., et al. Asthma and the elite athlete: summary of the International Olympic Committee’s consensus conference, Lausanne, Switzerland, January 22-24, 2008. J. Allergy Clin. Immunol. 2008;122(2):254–260. https://doi.org/10.1016/j.jaci.2008.07.003

10. Bonini M., Silvers W. Exercise-Induced Bronchoconstriction: Background, Prevalence, and Sport Considerations. Immunol. Allergy Clin. North Am. 2018;38(2):205–214. https://doi.org/10.1016/j.iac.2018.01.007

11. Bonini S. EIB or not EIB? That is the question. Med. Sci. Sports Exerc. 2008;40(9):1565–1566.: https://doi.org/10.1249/MSS.0b013e31817d818b

12. Global Initiative for Astmha. Global strategy for asthma management and prevention [Internet]. Available at: https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report2021-V2-WMS.pdf

13. Coates A.L., Wanger J., Cockcroft D.W., Culver B.H. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017;49(5):1601526. https://doi.org/10.1183/13993003.01526-2016

14. To T., Stanojevic S., Moores G., Gershon A.S., Bateman E.D., Cruz A.A., Boulet L-P. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health. 2012;12:204. https://doi.org/10.1186/1471-2458-12-204

15. Borna E., Nwaru B. I., Bjerg A., Mincheva R. Lundbäck B., Ekerljung L. Changes in the prevalence of asthma and respiratory symptoms in western Sweden between 2008 and 2016. Allergy. 2019;74(9):1703–1715. https://doi.org/10.1111/all.13840

16. Chu L.M., Pahwa P. Prevalence and associated factors for self-reported asthma in a Canadian population: The Canadian Community Health Survey, 2014. J. Asthma. 2018;55(1):26–34. https://doi.org/10.1080/02770903.2017.1310228

17. Chuchalin A.G. Sports and bronchial asthma.. Pul’monologiya i allergologiya [Pulmonology and Allergology]. 2005;(2):3–5 (In Russ.).

18. Selge С., Thomas S., Nowak D., Radon K., Wolfarth B. Asthma prevalence in German Olympic athletes: A comparison of winter and summer sport disciplines. Respir Med. 2016;118:15–21. https://doi.org/10.1016/j.rmed.2016.07.008

19. Chernjak A.V., Nistor S.Ju., Zykov K.A., Chernyak M.V., Naumenko Zh.K., Neklyudova G.V., Shmidt E.P. High prevalence of bronchial hyperreactivity in cross-country skiing athletes.. Pul’monologiya = Russian Pulmonology. 2019; 29(40):403–410 (In Russ.). https://doi.org/10.18093/0869-0189-2019-29-4-403-410

20. Kurowski M., Jurczyk J., Krysztofiak H., Kowalski M.L. Exercise-induced respiratory symptoms and allergy in elite athletes: Allergy and Asthma in Polish Olympic Athletes (A(2)POLO) project within GA(2)LEN initiative. Clin. Respir. J. 2016;10(2):231–238. https://doi.org/10.1111/crj.12210.

21. Larsson K., Ohlsén P., Larsson L., Malmberg P., Rydström P. O., Ulriksen H. High prevalence of asthma in cross country skiers. BMJ. 1993;307(6915):1326–1329. https://doi.org/10.1136/bmj.307.6915.1326

22. Langdeau J-B., Turcotte H., Thibault G., Boulet L-P. Comparative prevalence of asthma in different groups of athletes: a survey. Can. Respir. J. 2004;11(6):402–406. https://doi.org/10.1155/2004/251453

23. Smoliga J.M., Weiss P., Kenneth W. Rundell K.W. Exercise induced bronchoconstriction in adults: evidence based diagnosis and management. BMJ. 2016;352:h6951. https://doi.org/10.1136/bmj.h6951

24. Anderson S.D., Daviskas E. The mechanism of exerciseinduced asthma is. J. Allergy Clin. Immunol. 2000;106(3):453–459. https://doi.org/10.1067/mai.2000.109822

25. Parsons J.P., Hallstrand T.S., Mastronarde J.G., Kaminsky D.A., Rundell K.W., Hull J.H., et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. ;187(9):1016–1027. https://doi.org/10.1164/rccm.201303-0437ST

26. Fitch D. An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br. J. Sports Med. 2012;46(6):413–416. https://doi.org/10.1136/bjsports-2011-090814

27. Prohibited List. RUSADA [Internet]. Available at: https://rusada.ru/substances/prohibited-list/ (In Russ.).

28. Kindermann W. Do inhaled beta-2-agonists have an ergogenic potential in non-asthmatic competitive athletes? Sports Med. 2007;37(2):95–102. https://doi.org/10.2165/00007256-200737020-00001

29. Collomp K., Candau R., Lasne F., Labsy Z., Préfaut C., De Ceaurriz J. Effects of short-term oral salbutamol administration on exercise endurance and metabolism. J. Appl. Physiol. 2000;89(2):430–436. https://doi.org/10.1152/jappl.2000.89.2.430

30. Le Panse B., Arlettaz A., Portier H., Lecoq A-M., De Ceaurriz J., Collomp K. Effects of acute salbutamol intake during supramaximal exercise in women. Br. J. Sports Med. 2007;41(7):430–434. https://doi.org/10.1136/bjsm.2006.033845

31. van Baak M.A., Mayer L.H., Kempinski R.E., Hartgens F. Effect of salbutamol on muscle strength and endurance performance in nonasthmatic men. Med. Sci. Sports Exerc. 2000;32(7):1300–1306. https://doi.org/10.1097/00005768-200007000-00018

32. van Baak M.A., de Hon O.M., Hartgens F., Kuipers H. Inhaled salbutamol and endurance cycling performance in nonasthmatic athletes. Int. J. Sports Med. 2004;25(7):533–538. https://doi.org/10.1055/s-2004-815716

33. Achkasov E.E., Bezuglov Je.N., Veselova L.V., Zueva A.V., Koneva E.S. Basics of anti-doping support in sports.. Moscow: Chelovek Publ.; 2019. 288 p. (In Russ.).

34. Vernec A., Healy D. Prevalence of therapeutic use exemptions at the Olympic Games and association with medals: an analysis of data from 2010 to 2018. Br. J. Sports Med. 2020;54(15):920–924. https://doi.org/10.1136/bjsports-2020-102028

35. Heuberger J.A.A.C., Adam F. Cohen A.F. Review of WADA Prohibited Substances: Limited Evidence for Performance-Enhancing Effects. Sports Medicine. 2019;49(4):525–539. https://doi.org/10.1007/s40279-018-1014-1

36. Halabchi E., Abarashi M., Mansournia M.A., Seifbarghi T. Effects of Inhaled Salbutamol on Sport-Specific Fitness of NonAsthmatic Football Players. Acta Med. Iran. 2017;55(5):324–332.

37. Decorte N., Bachasson D., Guinot M., Flore P., Levy P., Verges S., Wuyam B. Effect of Salbutamol on Neuromuscular Function in Endurance Athletes. Med. Sci. Sports Exerc. 2013;45(10):1925–1932. https://doi.org/10.1249/MSS.0b013e3182951d2d

38. Hostrup M., Kalsen A., Bangsbo J., Hemmersbach P. Karlsson S., Backer V. High-dose inhaled terbutaline increases muscle strength and enhances maximal sprint performance in trained men. Eur. J. Appl. Physiol. 2014;114(12):2499–2508. https://doi.org/10.1007/s00421-014-2970-2

39. Hostrup M., Kalsen A., Ortenblad N., Juel C., Morch K., Rzeppa S., Karlsson et al. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men. J. Physiol. 2014;592(24):5445–5459. https://doi.org/10.1113/jphysiol.2014.277095

40. Hostrup M., Kalsen A., Auchenberg M., Bangsbo J., Backer V. Effects of acute and 2-week administration of oral salbutamol on exercise performance and muscle strength in athletes. Scand. J. Med. Sci. Sports. 2016;26(1):8–16. https://doi.org/10.1111/sms.12298

41. Lemminger A.K., Jessen S., Habib S., Onslev J., Feng Sheng Xu S., Backer V., et al. Effect of beta 2 -adrenergic agonist and resistance training on maximal oxygen uptake and muscle oxidative enzymes in men. Scand. J. Med. Sci. Sports. 2019;29(12):1881–1891. https://doi.org/10.1111/sms.13544

42. Eckerstrоm F., Rex C.E., Maagaard M., Rubak S. Hjortdal V E., Heiberg J. Exercise performance after salbutamol inhalation in non-asthmatic, non-athlete individuals: a randomised, controlled, cross-over trial. BMJ Open Sport Exerc. Med. 2018;4(1):e000397. https://doi.org/10.1136/bmjsem-2018-000397

43. Koch S., MacInnis M.J., Sporer B.C., Rupert J.L., Koehle M.S. Inhaled salbutamol does not affect athletic performance in asthmatic and non-asthmatic cyclists. Br. J. Sports Med. 2015;49(1):51–55. https://doi.org/10.1136/bjsports-2013-092706

44. Koch S., MacInnis M.J., Rupert J.L., Sporer B.C., Koehle M.S. Pharmacogenetic Effects of Inhaled Salbutamol on 10-km Time Trial Performance in Competitive Male and Female Cyclists. Clinical Journal of Sport Medicine. 2016;26(2):145–151. https://doi.org/10.1097/jsm.0000000000000201

45. Tjørhom A., Riiser A., Carlsen K.H. Effects of formoterol on endurance performance in athletes at an ambient temperature of −20°C. Scand. J. Med. Sci. Sports. 2007;17(6), 628–635. https://doi.org/10.1111/j.1600-0838.2006.00628.x

46. Hsu E., Bajaj T. Beta 2 Agonists. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK542249/

47. Haney S., Hancox R.J. Rapid onset of tolerance to betaagonist bronchodilation. Respir. Med. 2005;99(5):566–571. https://doi.org/10.1016/j.rmed.2004.10.014

48. Israel E., Drazen J.M., Liggett S.B., Boushey H.A., Cherniack R.M., Chinchilli V.M., et al. The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am. J. Respir. Crit. Care Med. 2000;162(1):75–80. https://doi.org/10.1164/ajrccm.162.1.9907092


Review

For citations:


Derevoedov A.A., Zholinsky A.V., Feshchenko V.S., Vykhodets I.T., Pavlova A.A. β2-agonists in sports: prevalence and impact on athletic performance. Sports medicine: research and practice. 2021;11(3):34-42. (In Russ.) https://doi.org/10.47529/2223-2524.2021.3.6

Views: 1877


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)