Preview

Sports medicine: research and practice

Advanced search

Possibilities of transcranial direct current stimulation (tDCS) use in elite sport

https://doi.org/10.47529/2223-2524.2021.3.7

Abstract

Transcranial direct current stimulation has proven to be the method that can modulate neural activity in various cases. As this method has been shown to be effective in improving muscular strength, reaction time and accuracy, motor learning, it seems to be promising in elite sports.

This paper provides an overview of studies on tDCS and its impact on central nervous system functioning, with an emphasis on potential sports utility. This review demonstrates that the basic mechanism of the effect of tDCS on nervous system functioning is its ability to modulate the excitability of neurons.

tDCS is able to influence various components of electrocortical potentials, the amplitude of the motor evoked potential, as well as the mechanisms of long-term potentiation and, as a consequence, the cellular mechanisms of motor learning and neuroplasticity in general. The beneficial effect of tDCS on attention selectivity and signal detection has been noted. It is also shown that tDCS can accelerate learning and enhance performance in a range of complex cognitive tasks.

In addition, a number of studies showing that tDCS can increase the efficiency of performing arithmetic and problem solving tasks are considered.

In the context of sports, the influence of tDCS over motor areas on motor learning and on the accuracy of voluntary movements seems to be important. Its ability to influence speed and strength indicators, namely, the maximum isometric force of various muscle groups and explosive strength, as well as endurance indicators seems promising, too. The review also shows that tDCS is reasonably safe and that serious adverse effects are extremely rare; the most common adverse effect is local skin irritation due to poor electrode placement.

About the Authors

S. I. Barshak
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Sergey I. Barshak, medical psychologist of the Department of Medical and Psychological Support of Sports Teams 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



M. D. Didur
N.P. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences
Russian Federation

Mikhail D. Didur, M.D., D.Sc. (Medicine), Professor, Director 

12a, Akademician Pavlov str., Saint Petersburg. 197367



V. V. Zavyalov
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Vladimir V. Zavyalov, M.D., sports medicine doctor of the Department of Medical Support for Sports Teams and Competitions 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



O. V. Kara
N.P. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences
Russian Federation

Olga V. Kara, Ph.D. (Biology), researcher 

12a, Akademician Pavlov str., Saint Petersburg. 197367



I. N. Mitin
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Igor N. Mitin, M.D., Ph.D. (Medicine), leading researcher of organizational research department 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



K. S. Nazarov
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Kirill S. Nazarov, psychologist of the Department of Medical and Psychological Support of Sports Teams of the Russian Federation 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



M. G. Ogannisyan
Federal Research and Clinical Center of Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Mkrtich G. Ogannisyan, Ph.D. (Biology), senior researcher of organizational research department 

5, Bolshaya Dorogomilovskaya str., Moscow, 121059



References

1. Sarmiento C., San-Juan D., Prasath V. Letter to the Editor: Brief history of transcranial direct current stimulation (tDCS): from electric fishes to microcontrollers. Psychol. Med. 2016;46(15):3259–3261. https://doi.org/10.1017/S0033291716001926

2. Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol. 2003;114(4):589–595. https://doi.org/10.1016/s1388-2457(02)00437-6

3. Delbourgo J. A most amazing scene of wonders: electricity and enlightenment in early America. Cambridge: Harvard University Press; 2006. 367 p.

4. Fitzgerald P.B. Transcranial pulsed current stimulation: a new way forward? Clin. Neurophysiol. 2013;125(2):217–219. https://doi.org/10.1016/j.clinph.2013.10.009

5. Bishop G.H., O’Leary J.L. The effects of polarizing currents on cell potentials and their significance in the interpretation of central nervous system activity. Electroencephalogr. Clin. Neurophysiol. 1950;2(1-4):401–416. https://doi.org/10.1016/0013-4694(50)90077-0

6. Lippold O., Winton L., Redfearn J. Potential level at surface of cerebral cortex of rat and its relation to cortical activity evoked by sensory stimulation. J. Physiol. 1961;157:7.

7. Purpura D.P., McMurtry J.G. Intracellular activities and evoked potential changes during polarization of motor cortex. J. Neurophysiol. 1965;28(1):166–185. https://doi.org/10.1152/jn.1965.28.1.166

8. Priori A., Berardelli A., Rona S., Accornero N., Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9(10):2257–2260. 10.1097/00001756-199807130-00020

9. Gellner A.-K., Reis J., Holtick C., Schubert C., Fritsch B. Direct current stimulation-induced synaptic plasticity in the sensorimotor cortex: structure follows function. Brain Stimul. 2020;13(1):80–88. https://doi.org/10.1016/j.brs.2019.07.026

10. Rioult-Pedotti M.-S., Friedman D., Donoghue J.P. Learning-induced LTP in neocortex. Science. 2000;290(5491):533–536. https://doi.org/10.1126/science.290.5491.533

11. Fritsch B., Reis J., Martinowich K., Schambra H.M., Ji Y., Cohen L.G., Lu B. Direct current stimulation promotes BDNFdependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. https://doi.org/10.1016/j.neuron.2010.03.035

12. Elbert T., Lutzenberger W., Rockstroh B., Birbaumer N. The influence of low-level transcortical DC-currents on response speed in humans. Int. J. Neurosci. 1981;14(1-2):101–114. https://doi.org/10.3109/00207458108985821

13. Salehinejad M.A., Wischnewski M., Nejati V., Vicario C.M., Nitsche M.A. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: a meta-analysis of neuropsychological deficits. PLoS One. 2019;14(4):e0215095. https://doi.org/10.1371/journal.pone.0215095

14. Clark V.P., Coffman B.A., Mayer A.R., Weisend M.P., Lane T.D., Calhoun V.D., et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–128. https://doi.org/10.1016/j.neuroimage.2010.11.036

15. Nelson J.T., McKinley R.A., Golob E.J., Warm J.S., Parasuraman R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage. 2014;85:909–917. https://doi.org/10.1016/j.neuroimage.2012.11.061

16. Gladwin T.E., Uyl T.E. den, Fregni F.F., Wiers R.W. Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci. Lett. 2012;512(1):33–37. https://doi.org/10.1016/j.neulet.2012.01.056

17. Parasuraman R., McKinley R.A. Using noninvasive brain stimulation to accelerate learning and enhance human performance. Hum. factors. 2014;56(5):816–824. https://doi.org/10.1177/0018720814538815

18. Chi R.P., Snyder A.W. Facilitate insight by non-invasive brain stimulation. PloS One. 2011;6(2):e16655. https://doi.org/10.1371/journal.pone.0016655

19. Jaeger D., Elbert T., Lutzenberger W., Birbaumer N. The effects of externally applied transcephalic weak direct currents on lateralization in choice reaction tasks. J. Psychophysiol. 1987;1(2):127–133.

20. Kadosh R.C., Soskic S., Iuculano T., Kanai R., Walsh V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr. Biol. 2010;20(22):2016–2020. https://doi.org/10.1016/j.cub.2010.10.007

21. Santiesteban I., Banissy M.J., Catmur C., Bird G. Enhancing social ability by stimulating right temporoparietal junction. Curr. Biol. 2012;22(23):2274–2277. https://doi.org/10.1016/j.cub.2012.10.018

22. Tseng P., Hsu T.-Y., Chang C.-F., Tzeng O.J., Hung D.L., Muggleton N.G., et al. Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J. Neurosci. 2012;32(31):10554–10561. https://doi.org/10.1523/JNEUROSCI.0362-12.2012

23. Nitsche M.A., Schauenburg A., Lang N., Liebetanz D., Exner C., Paulus W., Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 2003;15(4):619–626. https://doi.org/10.1162/089892903321662994

24. Antal A., Boros K., Poreisz C., Chaieb L., Terney D., Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97–105. https://doi.org/10.1016/j.brs.2007.10.001

25. Naros G., Geyer M., Koch S., Mayr L., Ellinger T., Grimm F., Gharabaghi A. Enhanced motor learning with bilateral transcranial direct current stimulation: impact of polarity or current flow direction? Clin. Neurophysi. 2016;127(4):2119–2126. https://doi.org/https://doi.org/10.1016/j.clinph.2015.12.020

26. Stagg C., Jayaram G., Pastor D., Kincses Z., Matthews P., Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011;49(5):800–804. https://doi.org/10.1016/j.neuropsychologia.2011.02.009

27. Kuo M.-F., Unger M., Liebetanz D., Lang N., Tergau F., Paulus W., Nitsche M.A. Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia. 2008;46(8):2122–2128. https://doi.org/10.1016/j.neuropsychologia.2008.02.023

28. Tecchio F., Zappasodi F., Assenza G., Tombini M., Vollaro S., Barbati G., Rossini P.M. Anodal transcranial direct current stimulation enhances procedural consolidation. J. Neurophysiologia. 2010;104(2):1134–1140. https://doi.org/10.1152/jn.00661.2009

29. Vines B.W., Nair D., Schlaug G. Modulating activity in the motor cortex affects performance for the two hands differently depending upon which hemisphere is stimulated. Eur. J. Neurosci. 2008;28(8):1667–1673. https://doi.org/10.1111/j.1460-9568.2008.06459.x

30. Matsuo A., Maeoka H., Hiyamizu M., Shomoto K., Morioka S., Seki K. Enhancement of precise hand movement by transcranial direct current stimulation. Neuroreport. 2011;22(2):78–82. https://doi.org/10.1097/WNR.0b013e32834298b3

31. Boggio P.S., Castro L.O., Savagim E.A., Braite R., Cruz V.C., Rocha R.R., et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci. Let. 2006;404(1-2):232–236. https://doi.org/10.1016/j.neulet.2006.05.051

32. Williams J.A., Pascual-Leone A., Fregni F. Interhemispheric modulation induced by cortical stimulation and motor training. Phys. Ther. 2010;90(3):398–410. https://doi.org/10.2522/ptj.20090075

33. Hummel F.C., Heise K., Celnik P., Floel A., Gerloff C., Cohen L.G. Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol. Aging. 2010;31(12):2160–2168. https://doi.org/10.1016/j.neurobiolaging.2008.12.008

34. Lattari E., Oliveira B.R., Monteiro Júnior R.S., Marques Neto S.R., Oliveira A.J., Maranhao Neto G.A., Machado S., Budde H. Acute effects of single dose transcranial direct current stimulation on muscle strength: A systematic review and metaanalysis. PLoS One. 2018;13(12):e0209513. https://doi.org/10.1371/journal.pone.0209513

35. Hazime F.A., Cunha R.A. da, Soliaman R.R., Romancini A.C.B., Castro Pochini A. de, Ejnisman B., Baptista A.F. Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players. Int. J. Sports Phys. Ther. 2017;12(3):402.

36. Vargas V.Z., Baptista A.F., Pereira G.O., Pochini A.C., Ejnisman B., Santos M.B., et al. Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. J. Strength Cond. Res. 2018;32(5):1336–1341. https://doi.org/10.1519/JSC.0000000000001985

37. Fregni F., Boggio P.S., Mansur C.G., Wagner T., Ferreira M.J., Lima M.C., et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–1555. https://doi.org/10.1097/01.wnr.0000177010.44602.5e

38. Hummel F., Celnik P., Giraux P., Floel A., Wu W.-H., Gerloff C., Cohen L.G. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(3):490–499. https://doi.org/10.1093/brain/awh369

39. Tanaka S., Hanakawa T., Honda M., Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp. Brain Res. 2009;196(3):459–465. https://doi.org/10.1007/s00221-009-1863-9

40. Tanaka S., Takeda K., Otaka Y., Kita K., Osu R., Honda M., et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil. Neural Repair. 2011;25(6):565–569. https://doi.org/10.1177/1545968311402091

41. Lattari E., Campos C., Lamego M.K., Legey S., Neto G.M., Rocha N.B., Oliveira A.J., et al. Can transcranial direct current stimulation improve muscle power in individuals with advanced weight-training experience? J. Strength Cond. Res. 2020;34(1):97–103. https://doi.org/10.1519/JSC.0000000000001956

42. Angius L., Santarnecchi E., Pascual-Leone A., Marcora S.M. Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience. 2019;419;34–45. https://doi.org/10.1016/j.neuroscience.2019.08.052

43. Antal A., Alekseichuk I., Bikson M., Brockmöller J., Brunoni A.R., Chen R., et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 2017;128(9):1774–1809. https://doi.org/10.1016/j.clinph.2017.06.001

44. Kessler S.K., Turkeltaub P.E., Benson J.G., Hamilton R.H. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul. 2012;5(2):155–162. https://doi.org/10.1016/j.brs.2011.02.007

45. Loo C., Martin D., Alonzo A., Gandevia S., Mitchell P., Sachdev P. Avoiding skin burns with transcranial direct current stimulation: preliminary considerations. Int. J. Neuropsychopharmacol. 2011;14(3):425–426. https://doi.org/10.1017/S1461145710001197


Review

For citations:


Barshak S.I., Didur M.D., Zavyalov V.V., Kara O.V., Mitin I.N., Nazarov K.S., Ogannisyan M.G. Possibilities of transcranial direct current stimulation (tDCS) use in elite sport. Sports medicine: research and practice. 2021;11(3):64-72. (In Russ.) https://doi.org/10.47529/2223-2524.2021.3.7

Views: 1041


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)