Preview

Sports medicine: research and practice

Advanced search

Prevention of traumatic brain injury complications in sports

https://doi.org/10.47529/2223-2524.2022.1.3

Abstract

The aim of the review is to inform doctors and trainers of sports teams about technologies that prevent complications of sport brain injuries (SBI). Low levels of visibility of clinical manifestations, specific characteristics of individual reactions to injury, anti-aggravation behavior among sportsmen, absence of unbiased methods of diagnostics of SBI are the main reasons behind underestimation of the severity of trauma. Treatment and rehabilitation procedures of mild SBI do not currently consider specific characteristics of trauma, associated with the increase in body and brain temperature and reduced cerebral perfusion during the traumatizing intervention. Injury of the brain causes an increase in cerebral temperature, which, in turn, can aggravate the consequences of traumatization. The control of the temperature of the brain can be achieved with non-invasive method of microwave radiometry, while the technology of craniocerebral hypothermia (CCH), which has evident neuroprotective properties, can aid in the prevention of complications of SBI.

About the Authors

A. V. Smolenskiy
Russian State University of Physical Culture, Sports, Youth and Tourism
Russian Federation

Andrey V. Smolenskiy, M.D., D.Sc. (Medicine), Professor, Head of the Department of Sports Medicine

4, Sirenevy blvd, Moscow, 105122
+7 (916) 681-29-93



O. A. Shevelev
Research Institute of Rehabilitation of the Federal Research and Clinical Centre of Resuscitation and Rehabilitation of the Ministry of Science and Higher Education of the Russian Federation; Medical Institute of the Federal State Educational Institution «Peoples' Friendship University of Russia» (RUDN University)
Russian Federation

Oleg A. Shevelev, M.D., D.Sc. (Medicine), Professor, Chief Researcher; Professor of the Department of General Pathology and Pathological Physiology named after V.A. Frolov of the Medical Institute

6, Miklukho-Maclay str., Moscow, 117198
24/2, Petrovka str., Moscow, 127051



M. V. Petrova
Research Institute of Rehabilitation of the Federal Research and Clinical Centre of Resuscitation and Rehabilitation of the Ministry of Science and Higher Education of the Russian Federation; Medical Institute of the Federal State Educational Institution «Peoples' Friendship University of Russia» (RUDN University)
Russian Federation

Marina V. Petrova, M.D., D.Sc. (Medicine), Professor, Deputy Director for Scientific and Clinical work; Head of the Department of Anesthesiology and Resuscitation with the course of medical rehabilitation of the Medical Institute

6, Miklukho-Maclay str., Moscow, 117198
24/2, Petrovka str., Moscow, 127051



M. Yu. Yuryev
Research Institute of Rehabilitation of the Federal Research and Clinical Centre of Resuscitation and Rehabilitation of the Ministry of Science and Higher Education of the Russian Federation
Russian Federation

Mikhail Y. Yuryev, M.D., Ph.D. (Medicine), Senior Researcher at the Laboratory of Clinical Neurophysiology

24/2, Petrovka str., Moscow, 127051



E. O. Sheveleva
Medical Institute of the Federal State Educational Institution «Peoples' Friendship University of Russia» (RUDN University)
Russian Federation

Ekaterina O. Sheveleva, M.D., Ph.D. (Medicine), Assistant of the Department of General Pathology and Pathological Physiology named after V.A. Frolov of the Medical Institute

6, Miklukho-Maclay str., Moscow, 117198



A. V. Tarasov
Russian State University of Physical Culture, Sports, Youth and Tourism
Russian Federation

Alexandr V. Tarasov, M.D., Ph.D. (Medicine), Associate Professor, Associate Professor of the Department of Sports Medicine

4, Sirenevy blvd, Moscow, 105122



A. B. Miroshnikov
Russian State University of Physical Culture, Sports, Youth and Tourism
Russian Federation

Alexandr B. Miroshnikov, Ph.D. (Biology), Associate Professor of the Department of Sports Medicine

4, Sirenevy blvd, Moscow, 105122



References

1. Potapov A.A., Lihterman L.B., Kravchuk A.D., Ohlopkov V.A., Aleksandrova E.V., Filatova M.M., et al. Mild traumatic brain injury: clinical guidelines. Moscow: Association of Neurosurgeons of Russia; 2016 (In Russ.).

2. Association of Neurosurgeons of Russia. Brain concussion. Clinical guidelines [internet]. 2022 g. Available at: https://cr.minzdrav.gov.ru/recomend/734_1 (In Russ.).

3. Theadom A., Mahon S., Hume P., Starkey N., BarkerCollo S., Jones K., Majdan M., Feigin V.L. Incidence of SportsRelated Traumatic Brain Injury of All Severities: A Systematic Review. Neuroepidemiology. 2020;54(2):192–199. https://doi.org/10.1159/000505424

4. Brazinova A., Rehorcikova V., Taylor M.S., Buckova V., Majdan M., Psota M., et al. Epidemiology of traumatic brain injury in Europe: a living systematic review. J. Neurotrauma. 2021;38(10):1411–1440. https://doi.org/10.1089/neu.2015.4126

5. Sun Y.-J., Zhang Z.-Y., Fan B., Li G.-Y. Neuroprotection by Therapeutic Hypothermia. Front. Neurosci. 2019;13:586. https://doi.org/10.3389/fnins.2019.00586

6. Dietrich W.D., Bramlett H.M. Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ. 2017;3(4):186– 198. https://doi.org/10.4103/bc.bc_28_17

7. Lee J.H., Zhang J., Yu Sh.P. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen. Res. 2017;12(3):341–350. https://doi.org/10.4103/1673-5374.202915

8. Gard A., Tegner Ye., Bakhsheshi M.F., Marklund N. Selective head–neck cooling after concussion shortens return-to-play in ice hockey players. Concussion. 2021;6(2):CNC90. https://doi.org/10.2217/cnc-2021-0002

9. Shevelev O., Petrova M., Smolensky A., Osmonov B., Toimatov S., Kharybina T., et al. Using medical microwave radiometry for brain temperature measurements. Drug Discov. Today. 2021;27(3):881–889. https://doi.org/10.1016/j.drudis.2021.11.004

10. Mrozek S., Bounes F.V., Geeraerts T. Brain Temperature: Physiology and Pathophysiology after Brain Injury. Anesthesiol. Res. Pract. 2012;2012(1):989487. https://doi.org/10.1155/2012/989487

11. Klein S.P., Depreitere B., Meyfroidt G. How I monitor cerebral autoregulation. Crit. Care. 2019;23(1):160. https://doi.org/10.1186/s13054-019-2454-1

12. Fantini S., Sassaroli А., Tgavalekos K.T., Joshua K.J. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics. 2016;3(3):031411. https://doi.org/10.1117/1.NPh.3.3.031411

13. Hayward J.N., Baker M.A. Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am. J. Physiol. 1968;215(2):389–403. https://doi.org/10.1152/ajplegacy.1968.215.2.389

14. Cabanac М., Brinnel Н. Blood flow in the emissary veins of the human head during hyperthermia. Eur. J. Appl. Physiol. Occup. Physiol. 1985;54(2):172–176. https://doi.org/10.1007/BF02335925

15. Gaillard F., Sharma R. Cerebral blood flow (CBF). Reference article. Radiopaedia.org [internet]. Available at: https://radiopaedia.org/articles/43779. https://doi.org/10.53347/rID-43779

16. Kiyatkin E.A. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature. 2019;6(4):271–333. https://doi.org/10.1080/23328940.2019.1691896

17. Guatteo E., Chung K.K., Bowala T.K., Bernardi G., Mercuri N.B., Lipski J. Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels. J. Neurophysiol. 2005;94(5):3069–3080. https://doi.org/10.1152/jn.00066.2005

18. Fohlmeister J.F., Cohen E.D., Newman E.A. Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable. J. Neurophysiol. 2010;103(3):1357–1374. https://doi.org/10.1152/jn.00123.2009

19. Yu Y., Hill A.P., Mccormick D.A. Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 2012;8(4):e1002456. https://doi.org/10.1371/journal.pcbi.1002456

20. Kiyatkin E.A. Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front. Biosci. (Landmark Ed). 2010;15(1):73–92. https://doi.org/10.2741/3608

21. Nybo L., Nielsen B. Middle cerebral artery blood flow velocity is reduced with hyperthermia during prolonged exercise in humans. J. Physiol. 2001;534(Pt 1):279–286. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00279.x

22. Ma W., Liu W., Li M. Analytical heat transfer model for targeted brain hypothermia. Int. J. Therm. Sci. 2016;100:66–74. https://doi.org/10.1016/j.ijthermalsci.2015.09.014

23. Uygun M., Kucuka S., Colpan C.O. 3B modeling and temperature distribution of human brain. In: 20th National Biomedical Engineering Meeting (BIYOMUT). IEEE; 2016. https://doi.org/10.1109/BIYOMUT.2016.7849378

24. Vesnin S.G., Sedankin M.K. Development of an antenna-applicator series for tissue temperature non-invasive measurement of a human body at different pathologies. Vestnik MGTU im. N.E. Baumana, Ser. Estestvennye nauki = Herald of the Bauman Moscow State Technical University, Series Natural Sciences. 2012;(11):43–61 (In Russ.).

25. Polyakov M.V., Khoperskov A.V. Mathematical modeling of radiation fields in biological tissues: the definition of the brightness temperature for the diagnosis. Bulletin of the Volgograd State University. Series 1. Mathematics. Physics. 2016;(5):73–84 (In Russ.). https://doi.org/10.15688/jvolsu1.2016.5.7

26. Maloney S.K., Mitchell D., Mitchell G., Fuller A. Absence of selective brain cooling in unrestrained baboons exposed to heat. Am. J. Phisiol. Regul. Integr. Comp. Physiol. 2007;292(5):R2059– 2067. https://doi.org/10.1152/ajpregu.00809.2006

27. Shevelev O.A., Butrov A.V., Cheboksarov D.V., Hodorovich N.A., Lapaev N.N., Pokatilova N.S. The pathogenetic role of cerebral hyperthermia in brain lesion. Klinicheskaya medicina = Clinical Medicine. 2017;95(4):302–309 (In Russ.). https://doi.org/10.18821/0023-2149-2017-95-4-302-309

28. Sharma H.S. Hyperthermia induced brain oedema: current status and future perspectives. Indian J. Med. Res. 2006;123(5):629–652

29. Bain A.R., Morrison S.A., Ainslie P.N. Cerebral oxygenation and hyperthermia. Front. Physiol. 2014;5:92. https://doi.org/10.3389/fphys.2014.00092

30. Nybo L., Nielsen B. Middle cerebral artery blood flow velocity is reduced with hyperthermia during prolonged exercise in humans. J. Physiol. 2001;534(Pt 1):279–286. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00279.x

31. Campos F., Perez-Mato M., Agulla J., Blanco M., Barral D., Almeida A., et al. Glutamate Excitoxicity Is the Key Molecular Mechanism Which Is Influenced by Body Temperature during the Acute Phase of Brain Stroke. PLoS One. 2012;7(8):e44191. https:// doi.org/10.1371/journal.pone.0044191

32. Shevelev O.A., Grechko A.V., Petrova M.V. Therapeutic hypothermia. Moscow: RUDN; 2019 (In Russ.).

33. Shevelev O.A., Smolenskij A.V., Miroshnikov A.B., Tarasov A.V., Husyajnov Z.M., Garakyan A.I. Temperature balance of the cerebral cortex in athletes boxers during training and competitions. Sportivno-pedagogicheskoe obrazovanie = Sport and pedagogical education. 2020;(4):59–63 (In Russ.).


Review

For citations:


Smolenskiy A.V., Shevelev O.A., Petrova M.V., Yuryev M.Yu., Sheveleva E.O., Tarasov A.V., Miroshnikov A.B. Prevention of traumatic brain injury complications in sports. Sports medicine: research and practice. 2022;12(1):64-72. (In Russ.) https://doi.org/10.47529/2223-2524.2022.1.3

Views: 778


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)