Preview

Спортивная медицина: наука и практика

Расширенный поиск

Эффективность физических нагрузок в кардиореабилитации

https://doi.org/10.47529/2223-2524.2022.1.1

Полный текст:

Аннотация

В обзоре показано, что молекулярные механизмы, инициируемые физическими нагрузками, лежат в основе многофакторного влияния последних на функцию сердечно-сосудистой системы и течение кардиальных заболеваний. Физические упражнения являются важным компонентом терапевтического лечения пациентов с сердечно-сосудистыми заболеваниями, что подтверждают результаты метаанализа, включавшего 63 исследования, которые были связаны с различными формами аэробных упражнений разной интенсивности (от 50 до 95 % VO2) в течение от 1 до 47 месяцев, и показавшего, что кардиореабилитация на основе физических упражнений улучшает сердечно-сосудистую функцию. Знание молекулярных основ влияния физических нагрузок дает возможность использовать биохимические маркеры для оценки эффективности реабилитационных программ.

Об авторах

М. Ю. Яковлев
ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Министерства здравоохранения Российской Федерации
Россия

Яковлев Максим Юрьевич, к.м.н., руководитель центра организации медицинской реабилитации

121099, Москва, ул. Новый Арбат, 32



О. Д. Лебедева
ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Министерства здравоохранения Российской Федерации
Россия

Лебедева Ольга Даниловна, д.м.н., главный научный сотрудник, профессор кафедры физической терапии и медицинской реабилитации

121099, Москва, ул. Новый Арбат, 32



В. Е. Владимирский
ФГБОУ ВО «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Министерства здравоохранения Российской Федерации
Россия

Владимирский Владимир Евгеньевич, д.м.н., профессор

614068, Россия, Пермь, ул. Плеханова, 36



Е. В. Владимирский
ФГБОУ ВО «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Министерства здравоохранения Российской Федерации
Россия

Владимирский Евгений Владимирович, д.м.н., заведующий кафедрой факультетской терапии №1

614068, Россия, Пермь, ул. Плеханова, 36



А. Н. Лунина
ФГБОУ ВО «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Министерства здравоохранения Российской Федерации
Россия

Лунина Анна Николаевна, ассистент

614068, Россия, Пермь, ул. Плеханова, 36



Список литературы

1. Thomas R.J., King M., Lui K., Oldridge N., Pina I.L., Spertus J. AACVPR/ACC/AHA 2007 Performance Measures on Cardiac Rehabilitation for Referral to and Delivery of Cardiac Rehabilitation/Secondary Prevention Services. J. Cardiopulm. Rehabil. Prev 2007;27(5):260–290. https://doi.org/10.1097/01.hcr.0000291295.24776.7b

2. Piepoli M.F., Corra U., Benzer W., Bjarnason-Wehrens B., Dendale P., Gaitaetal D., et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. 2010;17(1):1–17. https://doi.org/10.1097/hjr.0b013e3283313592

3. Исмайлов И.С., Мамедьярова И.А., Баранов А.В., Мустафаев Р.Д., Лебедева О.Д., Ачилов А.А. Сочетанное применение кинезо- и лазеротерапии в коррекции нарушений регионарной гемодинамики при дилатационной кардиомиопатии. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2020;97(5):13–21. https://doi.org/10.17116/kurort20209705113

4. Corbalan R., Bassand J.P., Illingworth L., Kayani G., Pieper K.S., Ambrosio G., et al. Analysis of outcomes in ischemic vs nonischemic cardiomyopathy in patients with atrial fibrillation: a report from the garfield-af registry. JAMA Cardiology. 2019;4(6):526–548. https://doi.org/10.1001/jamacardio.2018.4729

5. Haas S., Cate H.T., Accetta G., Bassand J.P., Kayani G., Kakkar A.K., et al. Quality of vitamin k antagonist control and 1-year outcomes in patients with atrial fibrillation: a global perspective from the garfield-af registry. PLoSONE. 2016;11(10):e0164076. https://doi.org/10.1371/journal.pone.0164076

6. Sawhney J.P., Kothiwale V.A., Bisne V., Durgaprasad R., Vanajakshamma V., Jadhav P., et al. Risk Profiles And One-Year Outcomes Of Patients With Newly Diagnosed Atrial Fibrillation In India: Insights From The Garfield-Af Registry. Indian Heart J. 2018;70(6):828–835. https://doi.org/10.1016/j.ihj.2018.09.001

7. Дмитриев В.К., Радзиевский С.А., Фисенко Л.А., Алексеев В.В., Лебедева О.Д. Церебрально-вегетативные аспекты лабильной гипертонии. Кардиология. 1988;(12):20–23.

8. Дмитриев В.К., Радзиевский С.А., Фисенко Л.А., Лебедева О.Д. Церебрально-вегетативные соотношения у больных гипертонической болезнью ранних стадий в процессе рефлексотерапии. Кардиология.1990;(1):35–38.

9. Никифорова Т.И., Лебедева О.Д., Рыков С.В., Белов А.С. Современные комплексные технологии реабилитации и профилактики у больных артериальной гипертензией. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2013;90(6):52–58.

10. Ehrman J.K., Gordon P.M., Visich P.S., Keteyian S.J. Clinical exercise phisiology. 1st ed. Champaign, IL: Human Kinetics; 2003.

11. Jardins T. Cardiopulmonary anatomy & physiology essentials for respiratory care. 4th ed. Clifton Park, NY: Thomson Delmar Learning; 2002.

12. Mancini D.M., Henson D., La Manca J., Donchez L., Levine S. Benefit of selective respiratory muscle training on exercise capacity in patients with chronic congestive heart failure. Circulation. 1995;91(2):320–329. https://doi.org/10.1161/01.cir.91.2.320

13. Stanford K.I., Goodyear L.J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv. Physio.l Educ. 2014;38(4):308–314. https://doi.org/10.1152/advan.00080.2014

14. Nystoriak M.A., Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018;5:135. https://doi.org/10.3389/fcvm.2018.00135

15. Egan B., Zierath J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–184. https://doi.org/10.1016/j.cmet.2012.12.012

16. Slentz C.A., Bateman L.A., Willis L.H., Granville E.O., Piner L.W., Samsa G.P., et al. Effects of exercise training alone vs. a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia. 2016;59(10):2088–2098. https://doi.org/10.1007/s00125-016-4051-z

17. Conn V.S., Koopman R.J., Ruppar T.M., Phillips L.J., Mehr D.R., Hafdahl A.R. Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. J. Prim. Care Community Health. 2014;5(3):211–222. https://doi.org/10.1177/2150131913520328

18. Lin X., Zhang X., Guo J., Roberts C.K., McKenzie S., Wu W.C., et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2015;4(7):e002014. https://doi.org/10.1161/JAHA.115.002014

19. Petridou A., Nikolaidis M.G., Matsakas A., Schulz T., Michna H., Mougios V. Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue. Eur. J. Appl. Physiol. 2005;94(1-2):84–92. https://doi.org/10.1007/s00421-004-1294-z

20. Fiuza-Luces C., Garatachea N., Berger N.A., Lucia A. Exercise is the real polypill. Physiology. 2013;28(5):330–358. https://doi.org/10.1152/physiol.00019.2013

21. Che L., Li D. The effects of exercise on cardiovascular biomarkers: new Insights, recent data, and applications. Adv. Exp. Med. Biol. 2017;999:43–53. https://doi.org/10.1007/978-981-104307-9_3

22. Fontana L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nat. Rev. Cardiol. 2018;15(9):566–577. https://doi.org/10.1038/s41569-018-0026-8

23. Swift D.L., Johannsen N.M., Lavie C.J., Earnest C.P., Church T.S. The role of exercise and physical activity in weight loss and maintenance. Progr. Cardiovasc. Dis. 2014;56(4):441–447. https://doi.org/10.1016/j.pcad.2013.09.012

24. Duscha B.D., Slentz C.A., Johnson J.L., Houmard J.A., Bensimhon D.R., Knetzger K.J., et al. Effects of exercise training amount and intensity on peak oxygen consumption in middleage men and women at risk for cardiovascular disease. Chest. 2005;128(4):2788–2793. https://doi.org/10.1378/chest.128.4.2788

25. Vega R.B., Konhilas J.P, Kelly D.P., Leinwand L.A. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab. 2017;25(5):1012–1026. https://doi.org/10.1016/j.cmet.2017.04.025

26. Stanford K.I., Goodyear L.J. Exercise regulation of adipose tissue. Adipocyte. 2016;5(2):153–162. https://doi.org/10.1080/21623945.2016.1191307

27. Vettor R., Valerio A., Ragni M., Trevellin E., Granzotto M., Olivieri M., et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2014;306(5):E519– 528. https://doi.org/10.1152/ajpendo.00617.2013

28. Borges J.P., da Silva Verdoorn K. Cardiac ischemia/reperfusion injury: the beneficial effects of exercise. Adv. Exp. Med. Biol. 2017;999:155–179. https://doi.org/10.1007/978-981-10-4307-9_10

29. Kasapis C., Thompson P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers A systematic review. J. Am. Coll. Cardiol. 2005;45(10):1563–1569. https://doi.org/10.1016/j.jacc.2004.12.077

30. Joki Y., Ohashi K., Yuasa D., Shibata R., Kataoka Y., Kambara T., et al. Neuron-derived neurotrophic factor ameliorates adverse cardiac remodeling after experimental myocardial infarction. Circ. Heart. Fail. 2015;8(2):342–351. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001647

31. Irving B.A., Lanza I.R., Henderson G.C., Rao R.R., Spiegelman B.M., Nair K.S. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J. Clin. Endocrinol. Metab. 2015;100(4):1654–1663. https://doi.org/10.1210/jc.2014-3081

32. Konopka A.R., Suer M.K., Wolff C.A., Harber M.P. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69(4):371–378. https://doi.org/10.1093/gerona/glt107

33. Vella C.A., Ontiveros D., Zubia R.Y. Cardiac function and arteriovenous oxygen difference during exercise in obese adults. Eur. J. Appl. Physiol. 2011 ;111(6):915–923. https://doi.org/10.1007/s00421-010-1554-z

34. Tao L., Bei Y., Lin S., Zhang H., Zhou Y., Jiang J., et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell. Physiol. Biochem. 2015;37(1):162–175. https://doi.org/10.1159/000430342

35. Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 2013 ;113(6):709–724. https://doi.org/10.1161/CIRCRESAHA.113.300376

36. Velez M., Kohli S., Sabbah H.N. Animal models of insulin resistance and heart failure. Heart Fail. Rev. 2014;19(1):1–13. https://doi.org/10.1007/s10741-013-9387-6

37. Bird S.R., Hawley J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med. 2016;2(1):e000143. https://doi.org/10.1136/bmjsem-2016-000143

38. Riehle C., Abel E.D. Insulin signaling and heart failure. Circ. Res. 2016;118(7):1151–1169. https://doi.org/10.1161/CIRCRESAHA.116.306206

39. Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018;100:1–19. https://doi.org/10.1016/j.vph.2017.05.005

40. Bloomer R.J., Goldfarb A.H., Wideman L., McKenzie M.J., Consitt L.A. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J. Strength Cond. Res. 2005;19(2):276–285. https://doi.org/10.1519/14823.1

41. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 2012;298:229– 317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7

42. Olver T.D., Ferguson B.S., Laughlin M.H. Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain. Prog. Mol. Biol. Transl. Sci. 2015;135:227–257. https://doi.org/10.1016/bs.pmbts.2015.07.017

43. Calvert J.W., Condit M.E., Aragon J.P., Nicholson C.K., Moody B.F., Hood R.L., et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ. Res. 2011;108(12):1448–1458. https://doi.org/10.1161/CIRCRESAHA.111.241117

44. Verhaar M.C., Westerweel P.E., van Zonneveld A.J., Rabelink T.J. Free radical production by dysfunctional eNOS. Heart. 2004;90(5):494–495. https://doi.org/10.1136/hrt.2003.029405

45. Prior B.M., Yang H.T., Terjung R.L. What makes vessels grow with exercise training? J. Appl. Physiol. 2004;97(3):1119–1128. https://doi.org/10.1152/japplphysiol.00035.2004

46. Hoier B., Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014 ;21(4):301–314. https://doi.org/10.1111/micc.12117

47. Cai D., Yuan M., Frantz D.F., Melendez P.A., Hansen L., Lee J., et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 2005;11(2):183–190. https://doi.org/10.1038/nm1166

48. Rogero M.M., Calder P.C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10(4):e432. https://doi.org/10.3390/nu10040432

49. Liu H.W., Chang S.J. Moderate exercise suppresses NFkappaB signaling and activates the SIRT1-AMPK-PGC1alpha axis to attenuate muscle loss in diabetic db/db Mice. Front. Physiol. 2018;9:636. https://doi.org/10.3389/fphys.2018.00636

50. Lancaster G.I., Febbraio M.A. The immunomodulating role of exercise in metabolic disease. Trends Immunol. 2014;35(6):262–269. https://doi.org/10.1016/j.it.2014.02.008

51. Creber R.M.M., Lee C.S., Margulies K., Ellis S., Riegel B. Exercise in heart failure and patterns of inflammation and myocardial stress over time. Circulation. 2014;130(2):A11902

52. Hoffmann C., Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptathions. Cold Spring Harb. Perspect. Med. 2017;7(11):a029793. https://doi.org/10.1101/cshperspect.a029793

53. Schnyder S., Handschin C. Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone. 2015;80:115–125. https://doi.org/10.1016/j.bone.2015.02.008

54. Pedersen B.K., Febbraio M.A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012;8(8):457–465. https://doi.org/10.1038/nrendo.2012.49

55. Mathur N., Pedersen B.K. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:109502. https://doi.org/10.1155/2008/109502

56. Ellingsgaard H., Hauselmann I., Schuler B., Habib A.M., Baggio L.L., Meier D.T., et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 2011;17(11):1481–1489. https://doi.org/10.1038/nm.2513

57. Keller C., Hellsten Y., Steensberg A., Pedersen B.K. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine. 2006;36(3-4):141–147. https://doi.org/10.1016/j.cyto.2006.10.014

58. Seldin M.M., Peterson J.M., Byerly M.S., Wei Z., Wong G.W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J. Biol. Chem. 2012;287(15):11968– 11980. https://doi.org/10.1074/jbc.M111.336834

59. Oshima Y., Ouchi N., Sato K., Izumiya Y., Pimentel D.R., Walsh K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008;117(24):3099– 3108. https://doi.org/10.1161/CIRCULATIONAHA.108.767673

60. Xi Y., Gong D.W., Tian Z.J. FSTL1 as a Potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Sci. Rep. 2016;6:32424. https://doi.org/10.1038/srep32424

61. Kuang X.L., Zhao X.M., Xu H.F., Shi Y.Y., Deng J.B., Sun G.T. Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development. BMC Neurosci. 2010;11:137. https://doi.org/10.1186/1471-2202-11-137

62. Matthews V.B., Astrom M.B., Chan M.H.S., Bruce C.R., Krabbe K.S., Prelovsek O., et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009);52(7):1409–1418. https://doi.org/10.1007/s00125-009-1364-1

63. Anderson L., Thompson D.R., Oldridge N., Zwisler A.D., Rees K., Martin N., et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016;(1):CD001800. https://doi.org/10.1002/14651858.CD001800.pub3


Рецензия

Для цитирования:


Яковлев М.Ю., Лебедева О.Д., Владимирский В.Е., Владимирский Е.В., Лунина А.Н. Эффективность физических нагрузок в кардиореабилитации. Спортивная медицина: наука и практика. 2022;12(1):37-46. https://doi.org/10.47529/2223-2524.2022.1.1

For citation:


Yakovlev M.Yu., Lebedeva O.D., Vladimirsky V.E., Vladimirsky E.V., Lunina A.N. The effectiveness of physical activity in cardiorehabilitation. Sports medicine: research and practice. 2022;12(1):37-46. (In Russ.) https://doi.org/10.47529/2223-2524.2022.1.1

Просмотров: 230


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)