Preview

Sports medicine: research and practice

Advanced search

Some aspects of the influence of extreme climatic factors on the physical performance of athletes

https://doi.org/10.47529/2223-2524.2022.1.5

Abstract

Professional athletes often have to participate in competitions in climatic conditions that differ from the optimal or habitual ones for their place of residence. In this regard, it seems relevant to the question of how borderline and extreme external conditions (low and high ambient temperatures, changes in atmospheric pressure, altitude) affect sports performance and endurance. The review presents the biochemical mechanisms underlying the adaptation of athletes to environmental conditions. The human body maintains a fairly constant internal temperature (in some articles — the core) of the body at a level of 37 ± 10C throughout its life, despite a wide range of environmental parameters. The intensity of the processes providing for the release of heat is reflexively regulated. The neurons responsible for heat exchange are located in the center of thermoregulation of the hypothalamus. In the course of evolution, mammals have developed a variety of mechanisms for regulating body temperature, including nervous and humoral, that affect energy metabolism and behavioral responses. There are two ways of heat generation: contractile thermogenesis, due to contractions of skeletal muscles (a special case — cold muscle tremors), and non-contractile — when the processes of cellular metabolism are activated: lipolysis (in particular, brown adipose tissue) and glycolysis. When exposed to extreme ambient temperatures, the thermoregulatory system adjusts to maintain a stable core body temperature by preventing heat loss and increasing heat production in cold conditions, or increasing heat dissipation if the ambient temperature rises. The ambient temperature corresponding to 20–25 ºС on land and 30–35 ºС in water is considered thermoneutral for humans in a state of relative rest. However, any deviations from these conditions, especially against the background of intense physical exercise, can lead to functional overstrain, decreased endurance and sports performance.

About the Authors

I. V. Kobelkova
Federal Research Center of Nutrition and Biotechnology; Academy of Postgraduate Education of the Federal State Budgetary Institution of FMBA of Russia
Russian Federation

Irina V. Kobelkova, MD, PhD, Senior Researcher of Sports Anthropology and Nutrition Laboratory, Federal Research Centre of Nutrition and Biotechnology

 2/14 bldg. 1, Ustyinsky side str., Moscow, 109240
+7 (910) 406-40-31



M. M. Korosteleva
Peoples’ Friendship University of Russia
Russian Federation

Margarita M. Korosteleva, Ph. D., interim Senior Researcher of Sports Anthropology and Nutrition Laboratory, Federal Research Centre of Nutrition and Biotechnology; Associate Professor, Department of Nursing Management of Peoples’ Friendship University of Russia

6, Miklukho-Maclay str., Moscow, 117198
 2/14 bldg. 1, Ustyinsky side street, Moscow, 109240
+7 (985) 567-78-22



D. B. Nikityuk
Federal Research Center of Nutrition and Biotechnology
Russian Federation

Dmitry B. Nikityuk, M.D., D.Sc. (Medicine), Prof., Corresponding Member of the Russian Academy of Sciences, Director of the Federal Research Centre of Nutrition and Biotechnology

2/14 bldg. 1, Ustyinsky side str., Moscow, 109240
+7 (495) 698-53-46



References

1. Burtscher M., Gatterer H., Burtscher J., Mairbaurl H. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Front. Physiol. 2018;9:572. https://doi.org/10.3389/fphys.2018.00572

2. Brocherie F., Girard O., Millet G.P. Emerging Environmental and Weather Challenges in Outdoor Sports. Climate. 2015;3(3):492–521. https://doi.org/10.3390/cli3030492

3. Akerman A.P., Tipton M., Minson C.T., Cotter J.D. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither? Temperature (Austin). 2016;3(3):412–436. https://doi.org/10.1080/23328940.2016.1216255

4. Racinais S., Cocking S., Periard J.D. Sports and environmental temperature: from warming-up to heating-up. Temperature (Austin). 2017;4(4):227–257. https://doi.org/10.1080/23328940.2017.1356427

5. Henstridge D.C., Febbraio M.A., Hargreaves M. Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J Appl. Physiol. 2016;120(6):683–691. https://doi.org/10.1152/japplphysiol.00811.2015

6. Chung N., Park J., Lim K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. J. Exerc. Nutrition Biochem. 2017;21(2):39–47. https://doi.org/10.20463/jenb.2017.0020

7. Goto K. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. Eur. J. Appl. Physiol. 2011;111(1):17–27; http://doi.org/10.1007/s00421-010-1617-1

8. Kakigi R. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J. Physiol. Sci. 2011;61(2):131–140. http://doi.org/10.1007/s12576-010-0130-y

9. Chen T.I., Tsai P.H., Lin J.H., Lee N.Y., Liang M.T. Effect of short-term heat acclimation on endurance time and skin blood flow in trained athletes. Open Access J. Sports. Med. 2013;4:161–170. http://doi.org/10.2147/OAJSM.S45024

10. Gaoua N., de Oliveira R.F., Hunter S. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance. Front. Psychol. 2017;8:1479. http://doi.org/10.3389/fpsyg.2017.01479

11. Charlot K., Faure C., Antoine-Jonville S. Influence of Hot and Cold Environments on the Regulation of Energy Balance Following a Single Exercise Session: A Mini-Review. Nutrients. 2017;9(6):592. http://doi.org/10.3390/nu9060592

12. Cowell S.A., Stocks J.M., Evans D.G., Simonson S.R., Greenleaf J.E. The exercise and environmental physiology of extravehicular activity. Aviat. Space Environ. Med. 2002;73(1):54–67.

13. Wasse L.K., King J.A., Stensel D.J., Sunderland C. Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males. Appl. Physiol. Nutr. Metab. 2013;38(8):905–909. http://doi.org/10.1139/apnm-2013-0008

14. Shorten A.L., Wallman K.E., Guelfi K.J. Acute effect of environmental temperature during exercise on subsequent energy intake in active men. Am. J. Clin. Nutr. 2009;90(5):1215–1221. http://doi.org/10.3945/ajcn.2009.28162

15. Cheung S.S., Lee J.K.W., Oksa J. Thermal stress, human performance, and physical employment standards. Appl. Physiol. Nutr. Metab. 2016;41(6 Suppl 2):S148-S164. https://doi.org/10.1139/apnm-2015-0518

16. Kojima C., Sasaki H., Tsuchiya Y., Goto K. The influence of environmental temperature on appetite-related hormonal responses. J. Physiol. Anthropol. 2015;34(1):22. https://doi.org/10.1186/s40101-015-0059-1

17. Laursen T.L., Zak R.B., Shute R.J., Heesch M.W.S., Dinan N.E., Bubak M.P., La Salle D.B., Slivka D.R. Leptin, adiponectin, and ghrelin responses to endurance exercise in different ambient conditions. Temperature (Austin). 2017;4(2):166–175. https://doi.org/10.1080/23328940.2017.1294235

18. Faure C., Charlot K., Henri S., Hardy-Dessources M.-D., Hue O., Antoine-Jonville S. Effect of heat exposure and exercise on food intake regulation: A randomized crossover study in young healthy men. Metabolism. 2016;65(10):1541–1549. https://doi.org/10.1016/j.metabol.2016.07.004

19. Saunders P.U., Garvican-Lewis L.A., Chapman R.F., Periard J.D. Special Environments: Altitude and Heat. Int. J. Sport Nutr. Exerc. Metab. 2019;29(2):210–219. https://doi.org/10.1123/ijsnem.2018-0256

20. Periard J.D., Racinais S. Performance and pacing during cycle exercise in hyperthermic and hypoxic conditions. Med. Sci. Sports Exerc. 2016;48(5):845–853. https://doi.org/10.1249/MSS.0000000000000839

21. Tyler C.J., Reeve T., Hodges G.J., Cheung S.S. The effects of heat adaptation on physiology, perception and exercise performance in the heat: A meta-analysis. Sports Med. 2016;46(11):1699– 1724. https://doi.org/10.1007/s40279-016-0538-5

22. Smirnova M.D., Sviridova O.N., Fofanova T.V., Lankin V.Z., Konovalova G.N., Tikhaze A.K. Summer heat Influence on quality of life, hemodynamics, electrolyte balance and oxidative stress in patients with moderate and high risk of cardiovascular complications and patients with coronary artery disease. Russkii Meditsinskii Zhurnal = Russian Medical Journal. 2014;22(18):1320-1324 (In Russ.).

23. Wright H., Selkirk G., McLellan T. HPA and SAS responses to increasing core temperature during uncompensable exertional heat stress in trained and untrained males. Eur. J. Appl. Physiol. 2010;108(5):987–997. http://doi.org/10.1007/s00421-009-1294-0

24. Kulikov V.P., Kuznetsova D.V., Zarya A.N. Role of cerebrovascular and cardiovascular co2-reactivity in the pathogenesis of arterial hypertension. Arterial’naya Gipertenziya = Arterial Hypertension. 2017;23(5):433–446 (In Russ.). https://doi.org/10.18705/1607-419X-2017-23-5-433-446

25. Dokladny K., Zuhl M.N., Moseley P.L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Appl. Physiol. 2015;120(6):692–701. http://doi.org/10.1152/japplphysiol.00536.2015

26. Leyk D., Hoitz J., Becker C., Glitz K.J., Nestler K., Piekarski C. Health Risks and Interventions in Exertional Heat Stress. Dtsch. Arztebl. Int. 2019;116(31–32):537–544. http://doi.org/10.3238/arztebl.2019.0537

27. Daanen H.A.M., Racinais S., Periard J.D. Heat acclimation decay and re-induction: A systematic review and metaanalysis. Sports Med. 2018;48(2):409–430. http://doi.org/10.1007/s40279-017-0808-x

28. Leonard W.R., Sorensen M.V., Galloway V.A., Spencer G.J., Mosher M.J., Osipova L., Spitsyn V.A. Climatic influences on basal metabolic rates among circumpolar populations. Am. J. Hum. Biol. 2002;14(5):609–620. http://doi.org/10.1002/ajhb.10072

29. White L.J., Dressendorfer R.H., Holland E., McCoy S.C., Ferguson M.A. Increased caloric intake soon after exercise in cold water. Int. J. Sport Nutr. Exerc. Metab. 2005;15(1):38–47. http://doi.org/10.1123/ijsnem.15.1.38

30. Crabtree D.R., Blannin A.K. Effects of exercise in the cold on Ghrelin, PYY, and food intake in overweight adults. Med. Sci. Sports Exerc. 2015;47(1):49–57. http://doi.org/10.1249/MSS.0000000000000391

31. Zeyl A., Stocks J.M., Taylor N.A.S., Jenkins A.B. Interactions between temperature and human leptin physiology in vivo and in vitro. Eur. J. Appl. Physiol. 2004;92(4-5):571–578. http://doi.org/10.1007/s00421-004-1084-7

32. van der Lans A. A., Hoeks J., Brans B., Vijgen G. H., Visser M. G., Vosselman M. J., et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 2013;123(8):3395–3403. http://doi.org/10.1172/JCI68993

33. Сastellani J.W., Tipton M.J. Cold stress effects on exposure tolerance and exercise performance. Compr. Physiol. 2015;6(1):443– 469. http://doi.org/10.1002/cphy.c140081

34. Brazaitis M., Eimantas N., Daniuseviciute L., Baranauskiene N., Skrodeniene E., Skurvydas A. Time course of physiological and psychological responses in humans during a 20-day severe-cold-acclimation programme. PLoS One. 2014;9(4):e94698. http://doi.org/10.1371/journal.pone.0094698

35. Opichka M., Shute R., Marshall K., Slivka D. Effects of exercise in a cold environment on gene expression for mitochondrial biogenesis and mitophagy. Cryobiology. 2019;90:47–53. http://doi.org/10.1016/j.cryobiol.2019.08.007

36. Shute R.J., Heesch M.W., Zak R.B., Kreiling J.L., Slivka D.R. Effects of exercise in a cold environment on transcriptional control of PGC-1α . Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018;314(6):R850–R857. http://doi.org/10.1152/ajpregu.00425.2017

37. Islam H., Edgett B.A., Gurd B.J. Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: A reevaluation. Metabolism. 2018;79:42–51. http://doi.org/10.1016/j.metabol.2017.11.001

38. Rao R.R., Long J.Z., White J.P. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157(6):1279–1291. http://doi.org/10.1016/j.cell.2014.03.065

39. Panati K., Suneetha Y., Narala V.R. Irisin/FNDC5–An updated review. Eur. Rev. Med. Pharmacol. Sci. 2016;20(4):689–697.

40. Cao R.Y., Zheng H., Redfearn D., Yang J. FNDC5: A novel player in metabolism and metabolic syndrome. Biochimie. 2019;158:111–116. http://doi.org/10.1016/j.biochi.2019.01.001

41. Sato T., Nemoto T., Hasegawa K., Ida T., Kojima M. A new action of peptide hormones for survival in a low-nutrient environment. Endocr. J. 2019;66(11):943–952. http://doi.org/10.1507/endocrj.EJ19-0274.

42. Schalt A., Johannsen M.M., Kim J., Chen R., Murphy C.J., Coker M.S., et al. Negative Energy Balance Does Not Alter Fat-Free Mass During the Yukon Arctic Ultra-the Longest and the Coldest Ultramarathon. Front. Physiol. 2018;9:1761. http://doi.org/10.3389/fphys.2018.01761

43. Coker R.H., Weaver A.N., Coker M.S., Murphy C.J., Gunga H.C., Steinach M. Metabolic Responses to the Yukon Arctic Ultra: Longest and Coldest in the World. Med. Sci. Sports Exerc. 2017;49(2):357–362. http://doi.org/10.1249/MSS.0000000000001095

44. Kennedy M.D., Faulhaber M. Respiratory Function and Symptoms Post Cold Air Exercise in Female High and Low Ventilation Sport Athletes. Allergy Asthma Immunol. Res. 2018;10(1):43–51. http://doi.org/10.4168/aair.2018.10.1.43

45. Bowes H., Eglin C.M., Tipton M.J., Barwood M.J. Swim performance and thermoregulatory effects of wearing clothing in a simulated cold-water survival situation. Eur. J. Appl. Physiol. 2016;116(4):759–767. http://doi.org/10.1007/s00421-015-3306-6

46. Bierens J.J., Lunetta P., Tipton M., Warner D.S. Physiology of Drowning: A Review. Physiology (Bethesda). 2016;31(2):147– 166. http://doi.org/10.1152/physiol.00002.2015

47. Taylor N.A., Machado-Moreira C.A., van den Heuvel A.M., Caldwell J.N. Hands and feet: physiological insulators, radiators and evaporators. Eur. J. Appl. Physiol. 2014;114(10):2037– 2060. http://doi.org/10.1007/s00421-014-2940-8.

48. Khanferyan R.A., Radysh I.V., Surovtsev V.V., Korosteleva M.M., Aleshina I.V. The importance of physical activity in the regulation of anti-viral immunity. Sports medicine: research and practice. 2020;10(3):27-39 (In Russ.). https://doi.org/10.47529/2223-2524.2020.3.27

49. Watkins S.L., Castle P., Mauger A. R., Sculthorpe N., Fitch N., Aldous J. The effect of different environmental conditions on the decision-making performance of soccer goal line officials. Res. Sports Med. 2014;22(4):425–437. https://doi.org/10.1080/15438627.2014.948624

50. McLean B.D., Buttifant D., Gore C.J., White K., Liess C., Kemp J. Physiological and performance responses to a preseason altitude-training camp in elite team-sport athletes. Int. J. Sports Physiol. Perform. 2013;8(4):391–399. https://doi.org/10.1123/ijspp.8.4.391

51. Hauser A., Troesch S., Saugy J.J., Schmitt L., Cejuela-Anta R., Faiss R., et al. Individual hemoglobin mass response to normobaric and hypobaric “live high-train low”: A one-year crossover study. J. Appl. Physiol. 2017;123(2):387–393. https://doi.org/10.1152/japplphysiol.00932.2016

52. Sharma A.P., Saunders P.U., Garvican-Lewis L.A., Clark B., Welvaert M., Gore C.J., Thompson K.G. Improved performance in national-level runners with increased training load at 1600 and 1800 m. Int. J. Sports Physiol. Perform. 2019;14(3):286–295. https://doi.org/10.1123/ijspp.2018-0104

53. Mairbaurl H., Weber R.E. Oxygen transport by hemoglobin. Compr. Physiol. 2012;2(2):1463–1489. https://doi.org/10.1002/cphy.c080113

54. Kacimi R., Richalet J. P., Corsin A., Abousahl I., Crozatier B. Hypoxia-induced downregulation of beta-adrenergic receptors in rat heart. J. Appl. Physiol. 1992;73(4):1377–1382. https://doi.org/10.1152/jappl.1992.73.4.1377

55. Hardie D. G., Ross F. A., Hawley S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012;13(4):251–262. https://doi.org/10.1038/nrm3311

56. Matu J., Gonzalez J.T., Ispoglou T., Duckworth L., Deighton K. The effects of hypoxia on hunger perceptions, appetite-related hormone concentrations and energy intake: A systematic review and meta-analysis. Appetite. 2018;125:98–108. https://doi.org/10.1016/j.appet.2018.01.015

57. Heikura I.A., Burke L.M., Bergland D., Uusitalo A.L.T., Mero A.A., Stellingwerff T. Impact of energy availability, health, and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int. J. Sports Physiol. Perform. 2018;13(8):1090–1096. https://doi.org/10.1123/ijspp.2017-0547

58. Woods A.L., Sharma A.P., Garvican-Lewis L.A., Saunders P.U., Rice A.J., Thompson K.G. Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. International Journal of Sport Nutrition and Exercise Metabolism. 2017;7(1):83–90. https://doi.org/10.1123/ijsnem.2016-0116

59. Garvican-Lewis L.A., Vuong V.L., Govus A.D., Peeling P., Jung G., Nemeth E., et al. Intravenous Iron Does Not Augment the Hemoglobin Mass Response to Simulated Hypoxia. Med. Sci. Sports Exerc. 2018;50(8):1669–1678. https://doi.org/10.1249/MSS.0000000000001608.

60. Gibson O.R., Taylor L., Watt P.W., Maxwell N.S. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med. 2017;47(9):1751– 1768. https://doi.org/10.1007/s40279-017-0717-z.


Review

For citations:


Kobelkova I.V., Korosteleva M.M., Nikityuk D.B. Some aspects of the influence of extreme climatic factors on the physical performance of athletes. Sports medicine: research and practice. 2022;12(1):25-36. (In Russ.) https://doi.org/10.47529/2223-2524.2022.1.5

Views: 762


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)