Preview

Sports medicine: research and practice

Advanced search

Blood fluidity during physical exertion of various types

https://doi.org/10.47529/2223-2524.2022.4.3

Abstract

This paper presents data from the literature and own results on the study of blood fluidity (or rheological properties) when performing physical exercises. It is shown that the rheology of blood depends on the functional state of the haemostasis system. It has been established that in the physiological state of the organism, physical exertion of any strength can lead to changes in the reactions of primary and plasma haemostasis and, accordingly, the rheological properties of blood. The review describes the study of factors related to blood flow in humans and animals before and after physical exercise (running, swimming, etc.) in the normal physiological state of the organism, with overstrain and with certain types of pathology (cardiovascular and metabolic diseases). Data on blood flow in conditions of physical activity restriction are presented. Special attention is paid to the corrective role of physical exercises on the rheology (fluidity) of blood in violation of homeostasis of the organism. Possible mechanisms of action of physical exertion on blood flow are considered.

About the Authors

M. E. Grigorjeva
M.V. Lomonosov Moscow State University
Russian Federation

Marina E. Grigorjeva, Ph.D. (Biological Sciences, Leading Researcher of the Laboratory of Protective Blood Systems named after prof. B.A. Kudryashov, Department of Human and Animal Physiology, Biology Faculty

1/12 Leninsky Gory, Moscow, 119234



S. M. Sorokoletov
S.P. Botkin City Clinical Hospital
Russian Federation

Sergey M. Sorokoletov, Full member of the National Security Academy, Professor, MD, Deputy chief physician for the medical unit (therapeutic care)

5 2nd Botkinsky proezd, Moscow, 125284



A. V. Korobovsky
Moscow Aviation Institute (National Research University)
Russian Federation

Alexander V. Korobovsky, Senior Lecturer of the Operation Management of Rocket and Space Systems Department

4 Volokolamskoye sh., 125993, Moscow



L. A. Lyapina
M.V. Lomonosov Moscow State University
Russian Federation

Ludmila A. Lyapina, Professor, Doctor of Biological Sciences, Head of laboratory of protective blood systems named after prof. B.A. Kudryashov, Department of Human and Animal Physiology, Biology Faculty

1/12 Leninsky Gory, Moscow, 119234



References

1. Amini A., Sobhani V., Mohammadi M.T., Shirvani H.J. Acute effects of aerobic, resistance and concurrent exercises, and maximal shuttle run test on coagulation and fibrinolytic activity in healthy young non-athlete. J. Sports Med. Phys. Fitness. 2017;5(5):633–642. https://doi.org/10.23736/S0022-4707.16.06092-8

2. Melnikova M.L. Stress psychology: theory and practice. Ekaterinburg: UGPU; 2018 (In Russ.).

3. Pedersen B.K., Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. J. Physiol. Rev. 2000;80(3):1055–1081. https://doi.org/10.1152/physrev.2000.80.3.1055

4. Fletcher G.F., Landolfo C., Niebauer J., Ozemek C., Arena R., Lavie C.J. Promoting and Exercise: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018;72(14):1622–1639. https://doi.org/10.1016/j.jacc.2018.08.2141

5. Semenova S.V., Luchenkov V.V., Kirichuk V.F., Parfenyuk V.K., Savinov V.A., Kiselev A.P. Rheological properties of blood and platelet aggregation in patients with neurocirculatory asthenia. Vestnik Sankt-Peterburgskogo universiteta. Ser. 11. Meditsina = Vestnik of Saint Petersburg University. Medicine. 2008;(4):14–24 (In Russ.).

6. Litvinov R.I., Weisel J.W. Role of red blood cells in haemostasis and thrombosis. ISBT Sci. Ser. 2017;12(1):176–183. https://doi.org/10.1111/voxs.12331

7. Golubeva M.G. The effect of physical activity on the functional state of erythrocyte membranes. Sportivnaya meditsina: nauka i praktika = Sports medicine: research and practice. 2020;10(2):55–64 (In Russ.).

8. Wallén N.H., Goodall A.H., Li N., Hjemdahl P. Activation of haemostasis by exercise, mental stress and adrenaline: effects on platelet sensitivity to thrombin and thrombin generation. Clin. Sci. 1999;97(1):27–35.

9. Romanova A.V., Gander D.V., Lysakov N.D., Korobovsky A.V. Study of temperament and stress resistance relationship at students team football players. Uchenye zapiski universiteta imeni P.F.Lesgafta. 2021;8(198):438–442 (In Russ.).

10. Kupchak B.R. Exercise and air-travel-induced alterations in blood hemostasis. Semin. Thromb. Hemost. 2018;44(8):756–764. https://doi.org/10.1055/s-0038-1670640

11. Secomb T.W., Pries A.R. The microcirculation: physiology at the mesoscale. J. Physiol. 2011;589(5):1047–1052. https://doi.org/10.1113/jphysiol.2010.201541

12. Contarteze R.V., Manchado F.B., Gobatto C.A., de Mello M.A.R. Forced swim reliability for exercise testing in rats by a tethered swimming apparatus. J. Mol. Integr. Physiol. 2008;151(3):415–422. https://doi.org/10.1016/j.cbpa.2007.03.005

13. Levitskaya N.G., Vilenskii D.A., Sebentsova E.A., Andreeva L.A., Kamenskii A.A., Myasoedov N.F. The effect of semax on the emotional state of white rats in normal and against the background of the action of cholecystokinin-tetrapeptide. Izvestiya RAN. Ser. Biol. = Biology Bulletin. 2010;(2):231–237 (In Russ.).

14. Grigor’eva M.E., Lyapina L.A. Regulation of haemostasis system by prolin-containing peptides. Мoscow: Kim L.A.; 2018 (In Russ.).

15. Melnikov A.A., Vikulov A.D. Rheological properties of blood in athletes. Yaroslavl’: YaGPU; 2008 (In Russ.).

16. Ribeiro J., Almeida-Dias A., Ascensão A., Magalhães J., Oliveira A.R., Carlson J., Mota J., Appell H-J. Duarte Hemostatic response to acute physical exercise in healthy adolescents. J. Sci. Med. Sport. 2007;10(3):164–169. https://doi.org/10.1016/j.jsams.2006.06.001

17. Shakhmatov I.I., Alekseeva O.V. The effect of repeated exposure to physical activity on the hemostasis system. Fundamental’nye issledovaniya = Fundamental research. 2011;10(1):181–185 (In Russ.).

18. Szanto S., Mody T., Zsuzsanna Gyurcsik Z., Babjak L.B., Somogyi V., Barath B., et al. Alterations of selected hemorheological and metabolic parameters induced by physical activity in untrained men and sportsmen. Metabolites. 2021;11(12):870. https://doi.org/10.3390/metabo11120870

19. Bilski J., Teległów A., Pokorski J., Nitecki J., Pokorska J., Nitecka E., et al. Effects of a meal on the hemorheologic responses to exercise in young males. Biomed. Res. Int. 2014;2014:862968. https://doi.org/10.1155/2014/862968

20. Brun J.F., Varlet-Marie E., Romain A.J., Guiraudou M., Raynaud de Mauverger E. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture. Clin. Hemorheol. Microcirc. 2013;55(1):5–27. https://doi.org/10.3233/CH-131686

21. Kostapanos M.S., Florentin M., Elisaf M.S., Mikhailidis D.P. Hemostatic factors and the metabolic syndrome. Curr. Vasc. Pharmacol. 2013;11(6):880–905. https://doi.org/10.2174/15701611113116660171

22. Bushueva N.A., Vorob’eva N.A. Characteristics of the hemostasis system during physical exertion to physiological and pathogenetic changes occurring in the organism. Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Ser. “Mediko-biologicheskie nauki” = Vestnik of Northern (Arctic) Federal University. Series “Medical and Biological Sciences”. 2015;(2):62–70 (In Russ.).

23. Pahkala K., Heinonen O.J., Lagström H., Hakala P., Simell O., Viikari J.S., et al. Vascular endothelial function and leisuretime physical activity in adolescents. Circulation. 2008;118(23):2353–2359. https://doi.org/10.1161/CIRCULATIONAHA.108.791988

24. Rigamonti A.E., Bollati V., Pergoli L., Iodice S., De Col A., Tamini S., et al. Effects of an acute bout of exercise on circulating extracellular vesicles: tissue-, sex-, and BMI-related differences. Int. J. Obes. 2020;44(5):1108–1118. https://doi.org/10.1038/s41366-019-0460-7

25. Park S.Y., Kwak Y.S., Pekas E.J.J. Impacts of aquatic walking on arterial stiffness, exercise tolerance, and physical function in patients with peripheral artery disease: a randomized clinical trial. Appl. Physiol. 2019;127(4):940–949. https://doi.org/10.1152/japplphysiol.00209.2019

26. Koenig W., Ernst E. Exercise and thrombosis. Coron. Artery Dis. 2000;11(2):123–127. https://doi.org/10.1097/00019501-200003000-00006

27. Zadow E.K., Wundersitz D.W.T., Hughes D.L., Adams M.J., Kingsley M.I.C., Blacklock H.A., et al. Coronavirus (COVID-19), coagulation, and exercise: interactions that may influence health outcomes. Semin. Thromb. Hemost. 2020;46(7):807–814. https://doi.org/10.1055/s-0040-1715094

28. van der Vorm L.N., Huskens D., Kicken C.H., Remijn J.A., Roest M., de Laat B., Miszta A. The effect of repeated bouts of exercise on the hemostasis system. Semin. Thromb. Hemost. 2018;44(8):710–722. https://doi.org/10.1055/s-0038-1673619

29. Mongirdienė A., Kubilius R. Effect of physical training on indices of platelet aggregation and fibrinogen concentration in patients with chronic heart failure. Medicina (Kaunas). 2015;51(6):343–350. https://doi.org/10.1016/j.medici.2015.11.001

30. Booth F.W., Roberts C.K., Laye M.J. Lack of exercise is a major cause of chronic diseases. Сompr. Physiol. 2012;2(2):1143–1211. https://doi.org/10.1002/cphy.c110025

31. Keller K. Sarcopenia. Wien. Med. Wochenschr. 2019;169(7-8):157–172. https://doi.org/10.1007/s10354-018-0618-2

32. Nascimento D.C., Neto F.R., de Santana F.S., da Silva R.A., Dos Santos-Neto L., Balsamo S. The interactions between hemostasis and resistance training: a review. Int. J. Gen. Med. 2012;5:249–254. https://doi.org/10.2147/IJGM.S29197

33. Zderic T.W., Hamilton M.T. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A) suppressed during prolonged physical inactivity (sitting). Lipids. Health. Dis. 2012;12(11):137. https://doi.org/10.1186/1476-511X-11-137

34. Arinell K., Blanc S., Welinder K.G., Støen O.G., Evans A.L., Fröbert O. Physical inactivity and platelet function in humans and brown bears: A comparative study. Platelets. 2018;29(1):87–90. https://doi.org/10.1080/09537104.2017.1336530

35. Teerlink J.R. Endothelins: Pathophysiology and treatment implications in chronic heart failure. Curr. Heart Fail. Rep. 2005;2(4):191–197. https://doi.org/10.1007/BF02696649

36. Kalinina A.M., Parfenov A.S., Kondrat’eva N.V., Ryzhov V.M., Khudyakov M.B. Interrelation of risk factors of cardiovascular diseases and subclinical markers of functional and structural vascular disorders. Profilakticheskaya meditsina. 2014;17(3):11–17 (In Russ.).

37. Lane-Cordova A.D., Phillips S.A., Baynard T., Woods J.A., Motl R.W., Fernhall B. Effects of ageing and physical activity on blood pressure and endothelial function during acute inflammation. Exp. Physiol. 2016;101(7):962–971. https://doi.org/10.1113/EP085551

38. Gliemann L., Nyberg M., Hellsten Y. Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity? Free Radic. Res. 2014;48(1):71–83. https://doi.org/10.3109/10715762.2013.835045

39. Trinity J.D., Richardson R.S. Physiological Impact and Clinical Relevance of Passive Exercise/Movement. Sports Med. 2019;49(9):1365–1381. https://doi.org/10.1007/s40279-019-01146-1

40. Lippi G., Maffulli N. Biological influence of physical exercise on hemostasis. Semin. Thromb. Hemost. 2009;35(3):269–276. https://doi.org/10.1055/s-0029-1222605.

41. El-Sayed M.S., Ali N., El-Sayed A.Z. Haemorheology in exercise and training. Sports Med. 2005;35(8):649–670. https://doi.org/10.2165/00007256-200535080-00001

42. Baskurt O.K., Ulker P., Meiselman H.J. Nitric oxide, erythrocytes and exercise. Clin. Hemorheol. Microcirc. 2011;49(1–4):175–181. https://doi.org/10.3233/CH-2011-1467

43. Rea C.J., Foley J.H., Okaisabor O., Sørensen B. FXIII: mechanisms of action in the treatment of hemophilia A. J. Thromb. Haemost. 2014;12(2):159–168. https://doi.org/10.1111/jth.12478

44. Beckman J.D., Wolberg A.S. Mechanistic rationale for factor XIII cotreatment in haemophilia. Haemophilia. 2019;25(6):e377–e378. https://doi.org/10.111/jth.13887

45. Noda N., Ayajiki K., Okamura T. Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol. Rev. 2007;59(1):54–87. https://doi.org/10.11.24/pr. 59.1.2

46. Gronek P., Wielinski D., Cyganski P., Rynkiewicz A., Zając A., Maszczyk A., et al. Review of exercise as medicine in cardiovascular disease: pathology and mechanism. Aging. Dis. 2020;11(2):327–340. https://doi.org/10.14336/AD.2019.0516

47. Fonseca T.R., Mendes T.T., Ramos G.P., Cabido C.E.T., Morandi R.F., Ferraz F.O., et al. Aerobic training modulates the increase in plasma concentrations of cytokines in response to a session of exercise. J. Environ. Public. Health. 2021;16:1304139. https://doi.org/10.1155/2021/1304139

48. Suzuki K., Nakaji S., Yamada M., Liu Q., Kurakake S., Okamura M., et al. Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Sci. Sport. Exerc. 2003;35(2):348–355. https://doi.org/10.1249/01.MSS.0000048861.57899.04

49. Bokarev I.N. Hematology for a practical doctor. Moscow: Meditsinskoe informatsionnoe agentstvo Publ.; 2018 (In Russ.).


Review

For citations:


Grigorjeva M.E., Sorokoletov S.M., Korobovsky A.V., Lyapina L.A. Blood fluidity during physical exertion of various types. Sports medicine: research and practice. 2022;12(4):45-58. (In Russ.) https://doi.org/10.47529/2223-2524.2022.4.3

Views: 730


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)