Preview

Sports medicine: research and practice

Advanced search

Application of phosphatidic acid in sport: reality or myth?

Abstract

The mTOR enzyme plays an important role in the transmission of extracellular signals through the phosphorylation of numerous substrates in various metabolic reactions of the human body. Expression of mTOR occurs in response to changes in metabolic demands of the muscle cell and leads to increased protein metabolism. Among the substances that increase the catalytic activity of mTOR one of the main places is occupied by phosphatidic acid, the content of which in skeletal muscles increases when performing physical exertion. Studies of recent years indicate the important role of phosphatidic acid in increasing the intensity of the synthesis of muscle proteins. So, there is the need to consider the current state of knowledge about the involvement of phosphatidic acid in the regulation of skeletal muscle metabolism. The review presents the results of studies published over the last few years, which expand the understanding of the effects of phosphatidic acid in the human body.

About the Authors

N. D. Golberg
ФГБУ Санкт-Петербургский научно-исследовательский институт физической культуры, Министерство спорта РФ
Russian Federation


V. А. Rogozkin
ФГБУ Санкт-Петербургский научно-исследовательский институт физической культуры, Министерство спорта РФ
Russian Federation


References

1. Гольберг Н.Д., Дружевская А.М., Рогозкин В.А., Ахметов И.И. Роль mTOR в регуляции метаболизма скелетных мышц // Физиология человека. 2014. Т.40, №5, С.123-132.

2. Астратенкова И.В., Рогозкин В.А. Молекулярные механизмы гипертрофии скелетных мышц // Российский физиологический журнал им И.М. Сеченова. 2014. Т.100, №6. С.649-669.

3. Magnuson B., Ekim B., Fimgar D. Regulation and function of ribosomal protein S6 kinase (S6K) with mTOR signaling networks // Biochem. J. 2012. Vol.441, №1. P.1-21. DOI: 10.1042/BJ20110892.

4. Kwak D., Choi S., Jeong H., Sang J.H., Lee Y., Jeon H. et al. Osmotic stress target of rapamycin (mTOR) complex 1 via C-Jun N-terminal kinase (JNK)-mediated Raptor protein phosphorylation // J.Biol.Chem. 2012. Vol.287, №22. P.18398-18407, DOI: 10.1074/jbc.M111.326538.

5. Iadevaia V., Huo Y., Zhang Z., Foster L.J., Prond C.G. Roles of the mammalian target of rapamycin, mTOR in controlling ribosome biogenesis and protein synthesis // Biochem. Soc. Trans. 2012. Vol.40, №1. P.168-172. DOI: 10.1042/BST20110682.

6. Morita M., Gravel S.P., Chenarg V., Sikstrom K., Zheng L., Alain T. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation // Cell Metab. 2013. Vol.18, №5. P.698-711. DOI: 10.1016/j. cmet.2013.10.001.

7. Bond P. Phosphatidic acid: biosynthesis, pharmacokinetics, mechanism of action and effect on strength and body composition in resistance-trained individuals // Nutr. Metab. (London) 2017. Vol.14. P.12, DOI: 10.1186/s12986-017-0166-6.

8. Yoon M.S., Sun Y., Arauz E., Jiang Y., Chen J. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mtorc 1) kinase by displacing fk506 binding protein 38 (fkbp 38) and exerting an allosteric effect // J Biol. Chem. 2011. Vol.286, №34. P.29568-29574. DOI: 10.1074/jbc.M111.262816.

9. Winter J.N., Fox T.E., Kester M., Jefferson L.S., Kimball S.R. Phosphatidic acid mediates activation of mtorc 1 through the erk signaling pathway // Am J Phys Cell Phys. 2010. Vol.299, №2. P.335-344. DOI: 10.1152/ajpcell.00039.2010.

10. Castro-Gomez P., Garcia-Serrano A., Visioli F., Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health // Prostaglandins, Leukotrienes and Essential fatty Acids (PLEFA). 2015. Vol.101. P.41-51. DOI: 10.1016/j. plefa.2015.07.004.

11. Purpura M., Jager R., Joy J.M., Lowery R.P., Moore J.D., Wilson J.M. Effect of oral administration of soy-derived phosphatidic acid on concentrations of phosphatidic acid and lysophosphatidic acid molecular species in human plasma // J. Int Soc Sports Nutr. 2013. Vol.10, Suppl.1. P.22. DOI: 10.1186/1550-2783-10-S1-P22.

12. Joy Y.M., Gundermann D.M., Lowery R.P., Jager R., McCleary S.A., Purpura M. et al. Phosphatidic acid enhances mtor signaling and resistance exercise induced hypertrophy // Nutr. Meta b. 2014. Vol.11. P.29. DOI: 10.1186/1743-7075-11-29.

13. Andre T.L., Gann J.J., McKinley-Barnard S.K., Song J.J., Willoughby D.S. Eight weeks of phosphatidic acid supplementation on muscle thickness and strength in resistance-trained men // J. Sports Sci. Med. 2016. Vol.15. P.532-539. eCollection 2016 Sep.

14. Escalante G., Alencar M., Haddock B., Harvey P. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men // J. Int. Soc. Sports Nutr. 2016. Vol.13, №1. P.24. DOI: 10.1186/s12970-016-0135-x.

15. Gonzalez A.M., Sell K.M., Ghigiarelli J.J., Kelly C.F., Shone E.W., Accetta M.R. et al. Effects of phosphatidic acid supplementation on muscle thickness and strength in resistance-trained men // Appl. Physiol. Nutr. Metab. 2017. Vol.42, №4. P.443-448. DOI: 10.1139/apnm-2016-0564.

16. Hoffman J.R., Stout J.R., Williams D.R., Wells A.J., Fragala M.S., Mangine G,T., Gonzalez A.M., Emerson N.S., McCormack W.P., Scanlon T.C. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men // J. Int Soc Sports Nutr. 2012. Vol.9, №1. P. 47. DOI: 10.1186/1550-2783-9-47.

17. Escalante G., Harvey P., Alencar M., Haddock B. The effects of phosphatidic acid supplementation on fitness levels in resistance trained women // J. Int. Soc Sports Nutr. 2016. Vol.13. (Suppl.1). P.2. DOI: 10.1186/s12970-016-0144-9.

18. Harvey P., Escalante G., Alencar M., Haddock B. The effects of phosphatidic acid supplementation on cardiovascular risk factors in resistance trained men // J. Int. Soc Sports Nutr. 2016. Vol.13. (Suppl.1). P.3. DOI: 10.1186/s12970-016-0144-9.

19. Close D.L., Hamilton D.L., Philp A., Burke L.M., Morton J.P. New strategies in sport nutrition to increase exercise performance // Free Radical Biology and Medicine. 2016. Vol.96. P. 144-158, DOI: 10.1016/j.freeradbiomed.2016.01.016.

20. Астратенкова И.В., Рогозкин В.А. Сигнальные пути, участвующие в регуляции метаболизма белков скелетных мышц // Российский физиологический журнал им. И. М. Сеченова. 2016. Т.102, №7. С.753-772.

21. Mobley CB, Hornberger TA, Fox CD, Healy JC, Ferguson BS, Lowery RP et al. Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. J Int. Soc Sports Nutr. 2015;15:32. DOI: 10.1186/s12970-015-0094-7.


Review

For citations:


Golberg N.D., Rogozkin V.А. Application of phosphatidic acid in sport: reality or myth? Sports medicine: research and practice. 2018;8(1):47-54. (In Russ.)

Views: 1922


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)