Preview

Sports medicine: research and practice

Advanced search

Development of a new orthopedic insole design for the correction of walking disorders

https://doi.org/10.47529/2223-2524.2025.4.1

Abstract

Modern orthotic insoles often fail to provide the necessary dynamic adaptation to the natural biomechanics of the foot. The rigid designs of traditional models limit physiologic mobility, which can lead to discomfort and progression of deformities. This determines the need to develop new solutions capable of adapting to the individual characteristics of the patient.

Purpose of the study — development of an orthopedic insole of a new design for rehabilitation of patients with different types of flat feet.

Materials and methods. The study was conducted using a comprehensive approach, including 3D modeling based on radiographic data, biomechanical analysis of load distribution, engineering calculations using CAD-systems, as well as clinical trials involving 163 patients. Podometrics, motiontracking and question2naire methods were used to evaluate the effectiveness.

Results. A fundamentally new orthopedic insole design was developed, including five metal guides and a system of dampers. Clinical trials showed that 98 % of patients reported improved walking comfort and 88.9 % improved foot stability. The design provides physiologic load distribution, reducing the impact on the joints and spine.

Conclusion. The results obtained confirm the promising application of this development in clinical practice. The development opens new opportunities in orthopedics, combining accurate anatomical support with dynamic correction of movements.

About the Authors

S. N. Zakharov
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

Sviatoslav N. Zakharov, Cand. Sci. (Medicine), Assistant of the Department of Forensic Medicine

8/2 Trubetskaya str., Moscow, 119991



B. B. Kuryshev
ODA Treatment and Rehabilitation Center LLC
Russian Federation

Boris B. Kuryshev, Orthopedic and Trauma Surgeon

7/9 Muravyov-Amursky str., Vladivostok, 690001



Yu. I. Pigolkin
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

Yuri I. Pigolkin, Corresponding Member of the Russian Academy of Sciences, Professor, Dr. Sci. (Medicine), Head of the Department of Forensic Medicine

8/2 Trubetskaya str., Moscow, 119991



References

1. Kuryishev B.B., Pigolkin Yu.I. Supporting device for the human foot arch. Patent for invention RU 2852855 C1, 16.12.2025. Application No. 2025103907 dated 21.02.2025.

2. Insoles for shoes, size 35–36. Yandex Market [internet]. Available at: Интернет-ресурс: https://market.yandex.ru/product--stelki-dlia-obuvi/136888057?sku=103120964777&uniqueId=1073323&do-waremd5=0NQr41YezKgSMPgDdlJlGQ&utm_term=62380485%7C136888057&clid=1601&utm_source=yandex&utm_medium=search&utm_campaign=ymp_offer_dp_dom_model_mrkscr_top_bko_dyb_search_rus&utm_content=cid%3A115706981%7Cgid%3A5547520555%7Caid%3A1870026716275229206%7Cph%3A54395143849%7Cpt%3Apremium%7Cpn%3A1%7Csrc%3Anone%7Cst%3Asearch%7Crid%3A54395143849%7Ccgcid%3A0&yclid=4834148699255341055 (accessed 19 June 2025). (In Russ.).

3. Insoles for shoes, size 41–45. Yandex Market [internet]. Available at: https://market.yandex.ru/product--stelki-dlia-obuvi-r-r-41-45-para-universalnykh-stelek-chernogo-tsveta/1039308890?utm_term=62380485%7C1039308890&clid=1601&utm_source_service=web&utm_source=yandex&utm_medium=search&utm_campaign=ymp_offer_dp_dom_model_mrkscr_top_bko_dyb_search_rus&utm_content=cid:115706981|gid:5547520555|aid:1870026716275229206|ph:54395143849|pt:premium|pn:2|src:none|st:search|rid:54395143849|cgcid:0&src_pof=1648&wprid=1750325585539632-5473873389267874566-balancer-l7leveler-kubr-yp-sas-210-BAL&icookie=Q6XyytxWgMfAvtEFaToLGF5ojbxBO9fGRI%2BIrDyOGV%2B%2BUdpgFRKmeoSPhruJaazl%2B8BruUa2TCqzlbNQ%2FrDvRfobBUs%3D&yclid=1017108968261025791&extdata=CgUKAzE4ORCzkQYY0bLPwgZYAmIKMTIxMTMzNDsxOA== (accessed 19 June 2025). (In Russ.).

4. Targ S.M. Center of inertia (center of mass). In: Prokhorov A.M. (ed.). Physical Encyclopedia. Vol. 5. Moscow: Great Russian Encyclopedia; 1999. (In Russ.).

5. Sinel’nikov R.D. Atlas of human anatomy. Moscow: Medgiz Publ.; 1963. (In Russ.).

6. Kapandzhi A. The lower limb. Functional anatomy. Moscow: Eksmo Publ.; 2020. (In Russ.).

7. Insarova N.I., Leshchenko V.G. Elements of biomechanics. Minsk: Belarusian State Medical University; 2005. (In Russ.).

8. Antonov V.F., Kozlova E.K., Chernysh A.M. Physics and biophysics. Moscow: GEOTAR-Media Publ.; 2010. (In Russ.).

9. Chen H., Sun D., Fang Y., Gao S., Zhang Q., Bíró I., Tafferner-Gulyás V., Gu Y. Effect of orthopedic insoles on lower limb motion kinematics and kinetics in adults with flat foot: a systematic review. Frontiers in Bioengineering and Biotechnology. 2024;12:1435554. https://doi.org/10.3389/fbioe.2024.1435554

10. Zuñiga J., Moscoso M., Padilla-Huamantinco P.G., Lazo-Porras M., Tenorio-Mucha J., Padilla-Huamantinco W., Tincopa J.P. Development of 3D-printed orthopedic insoles for patients with diabetes and evaluation with electronic pressure sensors. Designs. 2022;6(5):95. https://doi.org/10.3390/designs6050095

11. Ma C.Z.-H., Wong D.W.-C., Wan A.H.-P., Lee, W.C.-C. Effects of orthopedic insoles on static balance of older adults wearing thick socks. Prosthetics and orthotics international. 2018;42(3):357–362. https://doi.org/10.1177/0309364617752982

12. Zhang X., Xing X., Huo H. Design principle and biomechanical function of orthopedic insoles. Chinese Journal of Tissue Engineering Research. 2020;24(23):3744–3750. (In Chinese). https://doi.org/10.3969/j.issn.2095-4344.2691

13. Jafarzadeh E., Soheilifard R., Ehsani-Seresht A. Design optimization procedure for an orthopedic insole having a continuously variable stiffness/shape to reduce the plantar pressure in the foot of a diabetic patient. Medical Engineering & Physics. 2021;98:44–49. https://doi.org/10.1016/j.medengphy.2021.10.008

14. Li Y., Xiaoli H., Ye N., Songjian X., Li L., Qianqi H., Yining Y., Li C. Effect of orthopedic insoles on spinal deformity and walking in adolescents with idiopathic scoliosis summary. Frontiers in Pediatrics. 2023;11:1259746.

15. Yick K.L., Tse C.Y. Chapter 14 — The use of textiles and materials for orthopedic footwear insoles. In: Luximon A. (ed.). Handbook of Footwear Design and Manufacture. Woodhead Publishing; 2021, pp. 361–388. https://doi.org/10.1016/b978-0-12-821606-4.00012-0

16. Zhou X., Zeng Q., Liao Z., Lu P., Zou J., Li S., Huang G. Application of customized orthopedic insoles in the treatment of flatfoot. Chinese Journal of Tissue Engineering Research. 2022;26(28):4587–4592. (In Chinese). https://doi.org/10.12307/2022.318


Supplementary files

Review

For citations:


Zakharov S.N., Kuryshev B.B., Pigolkin Yu.I. Development of a new orthopedic insole design for the correction of walking disorders. Sports medicine: research and practice. (In Russ.) https://doi.org/10.47529/2223-2524.2025.4.1

Views: 9

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-2524 (Print)
ISSN 2587-9014 (Online)